PyPs, a programmable pass manager

Serge Guelton', Mehdi Amini®?3, Ronan Keryell?, and Béatrice Creusillet®*
! Télécom Bretagne, Plouzané, France
2 Centre de Recherche en Informatique, MINES ParisTech, Fontainebleau, France
3 HPC Project, Meudon, France
4 UPMC/LIP6, Paris, France

Abstract. As hardware platforms are growing in complexity, compiler
infrastructures need more flexibility: due to the heterogeneity of these
platforms, compiler phases must be combined in unusual and dynamic
ways, and several tools may need to be combined to handle specific parts
of the compilation process efficiently. The need for flexibility also appears
in iterative compilation when different phase orderings are explored.

In this context, we need to assemble pieces of software—typically com-
piler phases—without having to dive into the tool internals. The entity in
charge of this phase management is called a “pass manager”. While pass
managers used to rely on a statically defined schedule, the introduction
of plugins in Gce and the current trends in compiler design showcased
by LLVM pave the way for dynamic pass schedulers.

The contributions of this paper are a high-level modeling of pass chaining
and its implementation in the PIPS source-to-source compiler framework
under the name pyPs. As a result, we propose a high level ap1 for building
end-to-end specialized compilers with the minimum efforts validated by
5 prototypes detailed in the paper: an iterative compiler, an OpenMp
directive generator, a C-to-CUDA translator, a multimedia instruction
generator and a C-to-FPGA translator.

Keywords: programmable pass manager, compiler infrastructure, iter-
ative compilation, source-to-source transformation, heterogeneous com-
puting

1 Introduction & Motivation

The continuous search for performance leads to numerous different hardware
architectures, as showcased by current trend for heterogeneous computing. To
use these architectures efficiently, new languages and paradigms are often in-
troduced, but they typically only target specific architectures. For instance Ad-
vanced Vector eXtensions (AvX) intrinsics target vector registers of recent 286
processors, OpenMP directives target multi-cores, and most noticeably CUDA tar-
gets Nvidia’s Graphical Processing Unit (GpU). It is difficult to master all these
language-hardware bindings without loosing control on the original code, thus
compilers play a key role for “filling the gap” between generic sequential languages
and specific parallel languages [2]. Because of the diversity of targeted hardware,

II

flexibility and retargetability are critical properties for compiler frameworks that
must keep up with the steady pace of hardware founders. Also, applications
targeting heterogeneous architectures, e.g. General Purpose GPU (GPGPU) with
an 86 host, raise new problems such as the generation of different codes in
different assembly languages, remote memory management, data transfer gen-
erations. .. thus requiring new functionalities that are not available in mainline
compilers at that time.

Additionally, iterative compilation [13,18], the process of iteratively trans-
forming, compiling and evaluating a program to maximize a fitness function, is
more and more considered as an alternative to standard program optimizations
to solve complex problems, but it requires a dynamic reconfiguration of the com-
pilation process. In a compiler infrastructure, the latter is managed by the pass
manager. Because of the much more complicated compilation schemes, this pass
manager must be flexible and provide ways of overtaking the traditional hard-
coded pass sequence to allow compiler developers to manipulate the interactions
between passes and the compiled program dynamically.

This paper is organized as follows: we argument in favor of source-to-source
transformations in Section 2, and introduce a high-level model for pass chaining
in Section 3. We then present in Section 4 Pythonic PIPS (PyPS), our implemen-
tation in the Paralléliseur Intéractif de Programmes Scientifiques (PIPS) source-
to-source compiler framework. It involves a high level Application Programming
Interface (API) with a high level abstraction of compilation entities such as anal-
yses, passes, functions, loops, etc. Building up on the fact that an API is only
relevant when used extensively, we demonstrate our proposal in Section 5 where
the compilation scheme of five distinct compiler prototypes using our model are
detailed. Finally we present related works in Section 6.

2 Using a Source-to-source Transformation System

Historically, many transformations have been expressed at the source code
level, especially parallelizing transformations, and many successful compilers are
source-to-source compilers [5,10,3,22] or based on source-to-source compiler in-
frastructures [16,32,26,15,7]. Such infrastructures form a flexible transformation
system relevant for heterogeneous computing, e.g. parallelism detection algo-
rithm, variable privatization, communication generation etc.

In the heterogeneous world, it is common to rely on specific hardware compil-
ers to generate binary code for the part of the application intended to be run on
a particular hardware. Such compilers usually take a C dialect as input language
to generate assembly code. Thus, it is mandatory for the whole toolbox to be
able to generate C code as the result of its processing.

In addition to the intuitive collaboration with hardware compilers, source-
to-source compilers can also collaborate with each other to achieve their goal,
using source files as a common medium, at the expense of extra switches between
the Textual Representation (TR) and the Internal Representation (IR). Figure 1
illustrates this generic behavior and we present in Section 5.6 how we delegate

II1

some loop nest optimizations to the Polyhedral Compiler Collection (Pocc) tool.
Moreover, two source-to-source compilers written in the same infrastructure can
be combined in that way. For instance, our Single Instruction Multiple Data
(SIMD) instruction generator has been used for both the generation of Stream-
ing sIMD Extension (SSE) instructions on INTEL processors and to enhance the
code generated by the cupa/Open Computing Language (OpenCL) generator
presented in Section 5.5.

More traditional advantages of source-to-source compilers include their ease
of debug: the IR can be dumped as a TR at anytime. For the same reason, they
are very pedagogical tools and make it easier to illustrate the behavior of a
transformation.

| IR | | IR |

[e
[ier

(pretty-printer J source compiler

| T

| TR | | TR |

l (external tool })

Fig. 1: Source-to-source cooperation with external tools.

3 Model for Code Transformations

The core of a compiler optimizer is the sequencing of code transformations, a.k.a.
passes. This section studies from a formal point of view the interaction between
passes and elaborates on several transformation composition rules.

Let us give a general definition of what a transformation is. Let P be the
set of well-formed programs®, and T the set of code transformations. If p is a
program, let V;, (p) be the set of its possible input values; and given v;,, € Vi (p),
let P(p, v;,) denotes the results of the evaluation of p.

Definition 1. A code transformation is an application P — P that preserves
the semantics of the program, that is to say:

Vp € P, Yui, € Vin(p)v P(p, Uin) = P(t(p)avin)

However the former definition of a transformation by-passes an important
aspect of code transformations: they can fail. For instance the loop fusion of
two loops fails if the second loop carries backward dependencies on the first; a
loop-carried backward dependency can prevent loop vectorization and so on, or
the pass can even crash because of a lousy implementation. As a consequence,
we introduce an error state and propose:

> We call well-formed programs, programs that terminate and whose behavior is not
undefined according to the language standards accepted by the compiler.

v

Definition 2. A code transformation is an application P — (P U {error}) that
preserves the semantics of the program or fails.

And one can revert to the previous state by defining a failsafe operator:

Definition 3. The failsafe operator = : T — T is defined by

Ve T, VpeP, i(p)= {t(p) if t(p) # error

P otherwise
and then a failsafe composition:
Definition 4. The failsafe composition & : T x T — T is defined by
Vtg,t1 € T X T, t16tg=t10tg

Chaining transformations can be done using the ¢ operator and most com-
pilers are using this semantics as their primary way to compose transformations.
New passes can be defined as the composition of existing passes, enforcing mod-
ularity instead of monolithic passes. For instance a pass that generates OpenMp
code can be written as the failsafe combination of loop fusion, reduction detec-
tion, parallelism extraction and directive generation instead of a single directive
generation. Lattner advocates [20] for this low granularity in pass design.

Still, the fact that a transformation fails carries some important information.
In the example above, if loop vectorization succeeds, vector instruction can be
generated, otherwise parallelism extraction may be tried. This kind of behavior
is represented by a conditional composition:

Definition 5. The conditional composition o: T x T x T — T is defined by

Vg, t1,ta € TXT XT, ¥peP ((ti,t2)oto)(p) = {521(;)150)(}7) Zfzigﬁlgiiermr

The o operator is not used in Low Level Virtual Machine (LLVM) or GNU
C Compiler (Gcc), although it provides interesting perspectives. Let us assume
the existence of 3 transformations tgpy, tsse and tomp that convert a sequential
C code into a code with CUDA calls, SSE intrinsic calls and openMP directives,
respectively. Then the following expression:

(idTa tsse O tomp) Etgpu
means try to transform the code into a CUDA code followed by the identity
transformation or if it fails try to generate OpenMP directives then SSE intrinsics,
whether OpenMP directives were generated or not. It builds a decision tree that
allows complex compilation strategies.
If the intended behavior is to stop as soon as an error occurs, and to keep on
applying transformations otherwise, as in the sequence

((t3,id7) o ta,idy) o ((t1,id7) o to)

then writing the default skip transformation is bothersome. Thus we define an
error propagation operator:

Definition 6. The error propagation operator & :T — T — T is defined by
Vito,t1 € T X T, t13tg = (t1,idr) oty
which makes it possible to rewrite the above example as
t3 3ty Sty Sto

To give a practical example, let us assume the existence of a transformation
topt dma that optimizes the usage of Direct Memory Access (DMA) functions
by trying to remove redundant ones, to merge them, etc. It is not relevant to
apply it if no DMA function have been generated by a tyen dma transformation.
Guessing that tgen ama returns an error if it failed to generate DMA operations,
this kind of interaction can be represented using the expression

topt dma Olgen dma

This model sets the ground of the PyPS pass manager implemented on top
of the PIPS source-to-source compiler infrastructure [1].

4 PyPS

Instead of introducing yet another new domain-specific language to express these
operators, we chose to leverage existing tools and languages, taking advantage
of the similarity with existing control flow operators: indeed the transformation
composition is similar to a function definition, the failsafe operator can be im-
plemented using exception handling and the conditional composition performs a
branching operation. This leads to the idea of using a general purpose language
coupled with an existing compiler infrastructure, while clearly separating the
concerns.

4.1 Benefiting from Python: on the shoulders of giants

Using a programming language to manage pass interactions offers all the flexi-
bility needed to drive complex compilation processes, without the need of much
insight on the actual 1R. Conceptually, a scripting language is not required. How-
ever, it speeds up the development process without being a burden in terms of
performance as all the time is spent in the transformations themselves.

Some approaches introduced dedicated language [33] for the pass manage-
ment, but we rather follow the well known Bernard of Chartres’ motto: “on the
shoulders of giants” and thus chose to use Python as our base language. This
choice proved to be better than expected by not only providing high-level con-
structions in the language but also by opening access to a rich ecosystem which
widens the set of possibilities.

VI
4.2 Program abstractions

In the model presented in Section 3, transformations process the program as a
whole. However, transformations can proceed at lower granularity: compilation
unit level®, function level” or loop level:

— at compilation unit level, decisions based upon the target can be made fol-
lowing the rule of thumb “one compilation unit per target”. This helps to
drives the compilation process by applying different transformations to dif-
ferent compilation units;

— most functions that consider stack-allocated variables work at the function
level: common sub-expression elimination, forward substitution or partial
evaluation are good examples;

— a lot of optimization focus on loop nests, without taking care of the sur-
rounding statements. This is the case for polyhedral transformations.

Interprocedural transformations, like building the callgraph, require knowl-
edge of the whole program, or can be improved by such knowledge (e.g. constant
propagation), thus the program granularity is still relevant. The class diagram
in Figure 2 shows the relations between all these abstractions. These ones—and
only these ones—are exposed to the pass manager. The Maker in charge of the
compilation process is introduced in Section 4.4.

1 Compilation | 1 ; 1 1
g | S | i 1 am
rogram " Unit " Function * p

1

*
*

Maker

Fig.2: PYPS class hierarchy.

4.3 Control structures

We now present the main control structures involved in implementing the oper-
ators presented in Section 3.

Conditionals Conditionals are used when transformation scheduling depends
on user input or on current compilation status. Listing 1.1, extracted from our
SIMD Architecture Compiler (SAC) compiler, illustrates the use of conditionals
to implement the -fno-pass-name/-fpass-name switch as in GCcC.

6 A source file in C.
7 Also referred as “module level”.

VII

Listing 1.1: Conditionals in PYPS.

if conditions.get(’if conversion’, False):
module.if conversion ()

Listing 1.2: Iteration over selected modules.

for kernel in terapix kernels:
kernel . microcode normalize ()

Listing 1.3: Iteration over inner loops.

for 1 in module.inner loops(): l.unroll(4)

Listing 1.4: Multiple instruction selection.

for pattern in ["min","max","adds"]:
module. pattern recognition (pattern)

Fig. 3: For loop is a control structure commonly involved in PypPs

For Loops For loops are used to perform repetitive tasks, such as in the listings
from Figure 3:

1. applying a transformation to each function or loop of a set;
2. applying a transformation iteratively with varying parameters.

Listing 1.2 illustrates a basic iteration over selected modules in our compiler
for TERAPIX. Listing 1.3 from our SAC compiler shows how to unroll all inner
loops by a factor of four. Finally in our SAC compiler, we also perform early
pattern recognition. Listing 1.4 demonstrates the use of loops to apply this pass
for various patterns.

Exceptions A PyPS exception can be raised in three situations:

— a user input is invalid;
— a pass fails;
— an internal error (bug) happens.

Each of them has a different meaning and can be caught or propagated
depending on pass manager developer objectives. A sample usage is given in
Listing 1.5. Listing 1.6 illustrates the error propagation operator presented in
Def. 6 on a sequence of two passes in a loop: dead_ code_ elimination is applied
if redundant_load_ store_ elimination succeeds.

VIII

Listing 1.5: Using exceptions to adapt the compilation process.

Try most efficient parallelization pass first:
try: module.coarse grain parallelization ()
except:
or downgrade to loop_ distribution

try: module.loop distribution ()

except: pass # or do nothing

‘While Loops While loops are useful to achieve a goal within an unknown num-
ber of iterations. In our SAC compiler, while loops are combined with exception
handling to reach a fix point. Listing 1.6 shows this pattern on a data transfer
optimizer.

Listing 1.6: Searching fix point.
try:
while True:
module.redundant load store elimination ()
module. dead code elimination ()
except:pass # an ezxception is raised when nothing is cleaned up

4.4 Maker

As code for heterogeneous targets is generated in the form of source code, a final
compilation step is needed to get the final binary (or binaries). Stricto sensu, this
is not the role of the pass manager. However, as it is in charge of the source gen-
eration, it has the information concerning which code is to be compiled for which
architecture using which specific compiler. Moreover, complex transformations
for hybrid or distributed architectures might require the addition of runtime
calls. They are frequently shipped as shared library and thus the final compila-
tion step is dependent from the transformations that were done on the code. For
instance if some FFT operations using FFTWS3 are automatically transformed
in the equivalent GPU operations with CuFFT, and the the linking process has
to be adjusted. The pass manager can keep track of this. As a consequence, it is
useful to provide primitives to drive the final compilation process.

Our proposal is to associate an automatically generated Makefile to the gen-
erated sources. This makefile is a template that holds generic rules to compile
CUDA/OpenCL/AVX /OpenMP code, and it is filled with the proper dependencies
to run the compilation with appropriate compiler/linker flags. This approach
offers the advantage of delegating most of the difficulties to third-party tools, in
a source-to-source manner.

IX
5 PyPS Applications

To assert our proposal, we exhibit several real-world applications for which the
flexibility of the proposed pass manager has proved to be a valuable property.
For each scheme, the Source Lines Of Code (SLOC) of its PyPs version is given.

5.1 OpenMP

The openMP code generator written in PyPS uses a very classic compilation
scheme summarized in Listing 1.7, but still illustrates the basic functionality
of the pass manager. Two parallelization algorithms are tried successively and
whatever the method, directives are generated.

Listing 1.7: OpenMP compilation scheme.

def openmp(module, distribute=True):
module.reduction detection () #find reductions
module. privatize () #find private variables
try:module. parallelize () #find parallelism or raise ezxception
except:if distribute: module. distribute () #loop distribution
finally : module. generate _omp pragma() #directive generation

The whole compilation scheme takes 38 SLOC.

5.2 TERAPIX

The TERAPIX architecture [4] is a Field Programmable Gate Array (FPGA) based
accelerator for image processing developed by THALES. It achieves high through-
put and low energy consumption thanks to a highly specialized architecture and
a limited Instruction Set Architecture (1SA). In particular it uses Very Long In-
struction Word (VLIW) instructions written in a dedicated assembly. The com-
pilation scheme summarized in Listing 1.8 shows how the name of generated
functions takes part to the process. An external tool is used to compact the
generated code, enforcing tool reuse. The generated makefile calls a C compiler
for the host code and a specific assembler for the accelerator.
The whole compilation scheme takes 411 SLOC.

5.3 SAC

SAC is an automatic generator of multimedia instructions that can output either
AVX, SSE or NEON intrinsics. It combines polyhedral transformations at the loop
level and pattern matching at the function level to generate vector instructions.
Listing 1.9 shows an extract of its compilation scheme in charge of tiling as many
loops as possible.

The whole compilation schemes takes 220 sLOC.

Listing 1.8: Terapix compilation scheme.

def terapix(module):
counter ,kernels=0,list ()
for loop in module.loops ():
try:
Generate a mew mname from parent and a numeric suffix
kernel=module.name+str (counter)
loop.parallelize ()
module. outline (label=loop .label ,name=kernel)
Add the kernel object from its mname to our kernel list:
kernels.append (workspace|[kernel])
except: pass
for kernel in kernels:
kernel . terapix assembly ()
kernel . pipe("vliw_code_ compactor")

Listing 1.9: SAC compilation scheme extract.
def autotiler (loop):
if loop.loops():
try: loop.tile (...)
except: map(autotiler ,loop.loops())
else: loop.unroll (...)

5.4 An Iterative Compiler

PyPS makes it easier to build an iterative compiler. Cloning the workspace, it-
erating over a parameter domain for transformations such as loop unrolling is
straight-forward. We have also implemented a genetic algorithm that takes ad-
vantage of PyPS abstraction to test different transformation scheduling, bench-
mark the resulting applications and so forth. Additionally, each iteration is em-
bedded in a remote process, ¢ la Erlang, which gives a free performance boost
on distributed multi-core machines. The whole compiler takes 600 sLOC.

5.5 PAR4ALL

PAR4ALL is an open-source initiative to federate efforts around compilers to
allow automatic parallelization of applications to hybrid architectures. It relies
heavily on PyPS capabilities. The compilation process is driven by user switches
that select different back-ends:

— the openMP backend is based on the method showed earlier;

— CUDA and OpencCL back-ends rely on the parallelization algorithms used for
openMP and add complex handling in the pass management process to ad-
dress cases like C99 idioms unsupported by the NVIDIA compiler or Fortran

XI

to CUDA interface. The subtle differences between the two back-ends are
mostly handle in a runtime. Some others few differences are addressed in the
process of pass selection using branches wherever required.

— the scMP back-end [6] generates task based applications for an heteroge-
neous MP-SoC architecture designed by CEA for the execution of dynamic
or streaming applications [29]. To generate inter-task communications, the
compiler relies on a PIPS phase also used by the cuDpA back-end. The re-
sulting code is then post-processed by a phase directly coded in Python for
further adaptation to a run-time specific to the SCMP architecture.

PAR4ALL is already a big project which ensures the portability of the original
source code to many targets with many different options. It’s a perfect case study
for validating the concepts that we propose within PyPS, and its implementation
is actually made easier by the reuse and the easy combination of the different
constructs available in PyPS.

PAR4ALL represents around 10K source lines of code, including many other
stuff than the pass management. For the pass management part, the core sys-
tem takes only 71 sLoc, the openMP part 16, the scMpP part 38, and the
CUDA/OpenCL part 117. This one is bigger than expected because the trans-
formation of Fortran or C99 to CUDA requires many special handling.

5.6 When compilers interact with each other

The heterogeneity of target platforms encourage compilers developers to spe-
cialize their project. As a consequence, an ambitious compilation infrastructure
such a PAR4ALL cannot rely on a single framework to provide retargetability.
PAR4ALL core is based on PIPS framework which provides most of the state-of-
the-art transformations. But as it targets a wide range of applications, it misses
some automated analyses to drive the transformations in specific cases. For this
purpose PAR4ALL aims at collaborating with different source-to-source tools at
different parts of the compilation process.

One of these tools is Pocc [25], a polyhedral compiler that includes a sophis-
ticated automated decision process. However it also imposes several limitations
on the input code, and the user must insert directives to delimit the parts to
process. To handle this automatically and transparently, we have integrated in
PyPs a high level method “poccify()” which acts at module or loop level and
successively triggers several passes:

1. the static control parts of the code are detected, taking into account most
of PoCC restriction [17];

2. directives are generated, surrounding static control part and informing Pocc
on the liveness of variables;

3. static control parts are outlined in new functions and new compilation units;

4. the compilation units are passed to PoCcC, which optimizes the code for the
target architecture;

5. the code resulting from PoCC processing is then held out back to PIPS to be
cleaned and inlined at its original place.

XII

Having several compilers cooperating using a classical pass manager would
have been difficult. But we managed to handle that in an easy way thanks to the
benefit of Python capabilities for handling our operators simply, e.g. with the
exception mechanism. The tricky part was about joining the two compilers, but
the choice of a general purpose language like Python with embedded subprocess
and file management made this integration straightforward.

6 Related work

In traditional compilers such as GCC, a compilation scheme is simply a sequence
of transformations chained one after the other and applied iteratively to each
function of the original source code [31]. This rigid behavior led to the develop-
ment of a plugin mechanism motivated by the difficulty to provide additional fea-
tures to the existing infrastructure. Samples of successful plugins include “drag-
onegg” and “graphite”. GCC’s shortcoming led to the development of LLvM [21]
that addresses the lack of flexibility by providing an advanced pass manager that
can change the transformation chaining at run-time.

The source-to-source ROSE compiler [26,28] does not include any pass man-
ager but provides a full access to all analyses, passes and IR through a clean C+-+
API. An Haskell wrapper provides scripting facilities. Although this approach of-
fers good flexibility (any kind of pass composition is possible), it offers neither
clean concept separation nor any abstraction. This leads to complicated inter-
actions with the compiler. The addition of the scripting wrapper does not solve
the problem because it is a raw one-to-one binding of the full API. The POET [33]
language, designed to build compilers, suffers from the same drawbacks, as there
is no clean separation between compiler internals and pass management: every-
thing is bundled all together.

Compiler directives offer a non-intrusive way to drive the compilation pro-
cess, much as a pass manager does. They are extensively used in several
projects [19,8,9] to generate efficient code targeting multi-cores, GPGPU or multi-
media instruction set. They can specify a sequential ordering of passes, but they
do not provide extra control flow, and may have complex composition semantics.

Transformation recipes, i.e. specialized pass manager implementations, are
presented in [14]. The paper emphasizes the need of a common API to manipulate
compiler passes. It leads to a LUA based approach proposed in [27] to optimize
the generation of CUDA codes. It provides bindings in this scripting language for
a limited number of parametric polyhedral loop transformations. The addition
of scripting facilities makes it possible to benefit from complex control flow, but
the interface is limited to polyhedral transformations. The approach is proce-
dural and the API allows access to analysis results such as control flow graph,
dependence graph, etc.

The needs for iterative compilation led to the development of an extension
of the Gcc pass manager [12]. It provides a Gcc plugin that can monitor or
replace the GCC pass manager. It is used to apply passes to specific function
but the ordering is still sequential. The underlying middleware, 1CI, is also used

XIII

in [11] where an interactive compiler interface is presented. The authors enforce
the need for clear encapsulation and concept separation, and propose an XML
based interface to manage the transformation sequencing.

Our approach basically turns a compiler into a program transformation sys-
tem, which is an active research area. FERMAT [30] focuses on program re-
finement and composition, but is limited to transformation pipelining. STRAT-
EGO [24] software transformation framework does not allows much more than ba-
sic chaining of transformations using pipelines. CIL [23] only provides a flag-based
composition system, that is activation or deactivation of passes in a predefined
sequence without taking into account any feedback from the processing.

7 Conclusion

In this paper, we introduce PyPS, a pass manager API for the PIPS source-to-
source compilation infrastructure. This compilation framework is reusable, flex-
ible and maintainable, which are the three properties required to develop new
compilers at a low cost while meeting time-to-market constraints. This is due to a
clear separation of concepts between the internal representation, the passes, the
consistency manager and the pass manager. This clear separation is not imple-
mented in GCC and is not fully exploited either in research compilers, although
pass management is becoming a research topic.

Five specific compilers and other auxiliary tools are implemented using this
APIL. OpenMP, SSE, SCMP and CUDA/OpenCL generators, and an optimizing it-
erative compiler are used to illustrate how the API helps to meet very different
goals.

We show how it is possible to address retargetability by combining different
transformation tools in an end-to-end parallelizing compiler for heterogenous
architectures. Moreover it is done in an elegant and efficient way relying on the
clear separation of concepts that we identified and on facilities offered by Python
ecosystem.

Acknowledgments

This work has been partly funded by the French ANR. The authors would like
to thank Frédéric PERRIN, Grégoire PAYEN de la GARANDERIE, Adrien GUINET
and Sébastien MARTINEZ for their contribution to PyPS, and the HPC Project
startup for taking interest into it.

References

1. Mehdi Amini, Corinne Ancourt, Fabien Coelho, Béatrice Creusillet, Serge Guelton,
Francgois Irigoin, Pierre Jouvelot, Ronan Keryell, and Pierre Villalon. PIPS is
not (just) polyhedral software. In First International Workshop on Polyhedral
Compilation Techniques (IMPACT 2011), April 2011.

XIV

11.

12.

13.

14.

15.

16.

. Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis,

Parry Husbands, Kurt Keutzer, David A. Patterson, William Lester Plishker, John
Shalf, Samuel Webb Williams, and Katherine A. Yelick. The Landscape of Parallel
Computing Research: A View from Berkeley. Technical Report UCB/EECS-2006-
183, EECS Department, University of California, Berkeley, 2006.

Eduard Ayguade, MarcGonzalez, Marc Gonzalez, Jesus Labarta, Xavier Mar-
torell, Nacho Navarro, and Jose Oliver. NanosCompiler: A Research Platform
for OpenMP Extensions. In In First European Workshop on OpenMP, 1999.

. Philippe Bonnot, Fabrice Lemonnier, Gilbert Edelin, Gérard Gaillat, Olivier Ruch,

and Pascal Gauget. Definition and SIMD Implementation of a Multi-Processing
Architecture Approach on FPGA. In Design Automation and Test in Europe
(DATE’2008), pages 610-615. IEEE, 2008.

Z. Bozkus, A. Choudhary, G. Fox, T. Haupt, S. Ranka, and Min-You Wu. Com-
piling Fortran 90D/HPF for distributed memory MIMD computers. Journal of
Parallel and Distributed Computing, 21(1):15-26, 1994.

Béatrice Creusillet. Automatic Task Generation on the SCMP architecture for
data flow applications. http://www.par4all.org/documentation/publications,
2011.

Steven Derrien, Daniel Ménard, Kevin Martin, Antoine Floch, Antoine Morvan,
Adeel Pasha, Patrice Quinton, Amit Kumar, and Loic Cloatre. GeCoS: Generic
Compiler Suite. http://gecos.gforge.inria.fr.

Sebastien Donadio, James Brodman, Thomas Roeder, Kamen Yotov, Denis
Barthou, Albert Cohen, Maria Garzaran, David Padua, and Keshav Pingali. A
language for the compact representation of multiple program versions. In Eduard
Ayguadé, Gerald Baumgartner, J. Ramanujam, and P. Sadayappan, editors, Lan-
guages and Compilers for Parallel Computing, volume 4339 of Lecture Notes in
Computer Science, pages 136-151. Springer Berlin / Heidelberg, 2006.

CAPS Entreprise. HMPP Workbench. http://www.caps-entreprise.com/.
Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The Implementation
of the Cilk-5 Multithreaded Language. In In Proceedings of the SIGPLAN ’98
Conference on Program Language Design and Implementation, PLDI, 1998.
Grigori Fursin and Albert Cohen. Building a practical iterative interactive com-
piler. In In 1st Workshop on Statistical and Machine Learning Approaches Applied
to Architectures and Compilation (SMART’07), 2007.

Grigori Fursin, Cupertino Miranda, Olivier Temam, Mircea Namolaru, Elad Yom-
Tov, Ayal Zaks, Bilha Mendelson, Edwin Bonilla, John Thomson, Hugh Leather,
Chris Williams, Michael O’Boyle, Phil Barnard, Elton Ashton, Eric Courtois, and
Frangois Bodin. MILEPOST GCC: machine learning based research compiler. In
GCC Summit, Ottawa, Canada, 2008.

David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1989.
Mary Hall, Jacqueline Chame, Chun Chen, Jaewook Shin, Gabe Rudy, and Ma-
lik Khan. Loop transformation recipes for code generation and auto-tuning. In
Languages and Compilers for Parallel Computing. 2010.

Sang ik Lee, Troy A. Johnson, and Rudolf Eigenmann. Cetus - An Extensible Com-
piler Infrastructure for Source-to-Source Transformation. In 16th International
Workshop on Languages and Compilers for Parallel Computing, LCPC, 2003.
Francois Irigoin, Pierre Jouvelot, and Rémi Triolet. Semantical interprocedural
parallelization: an overview of the PIPS project. In International Conference on
Supercomputing (ICS), pages 244-251, 1991.

http://www.par4all.org/documentation/publications
http://gecos.gforge.inria.fr
http://www.caps-entreprise.com/

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

XV

Dounia Khaldi, Corinne Ancourt, and Francois Irigoin. Automatic C Programs Op-
timization and Parallelization using the PIPS-PoCC Integration. Technical report,
A /448 /CRI, MINES Paris-Tech, 2011.

Prasad Kulkarni, Wankang Zhao, Hwashin Moon, Kyunghwan Cho, David Whal-
ley, Jack Davidson, Mark Bailey, Yunheung Paek, and Kyle Gallivan. Finding
effective optimization phase sequences. In Conference on Language, Compiler, and
Tool for Embedded Systems, pages 12—23. ACM Press, 2003.

Kazuhiro Kusano and Mitsuhisa Sato. A comparison of automatic parallelizing
compiler and improvements by compiler directives. In International Symposium
on High Performance Computing, ISHPC ’99, 1999.

Chris Lattner. LLVM, chapter 11. 2011. http://www.aosabook.org/.

Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation. In International Symposium on Code Gen-
eration and Optimization, CGO’04, Palo Alto, California, 2004.

H. Munk, E. Ayguadé, C. Bastoul, P. Carpenter, Z. Chamski, A. Cohen, M. Cor-
nero, P. Dumont, M. Duranton, M. Fellahi, R. Ferrer, R. Ladelsky, M. Lindwer,
X. Martorell, C. Miranda, D. Nuzman, A. Ornstein, A. Pop, S. Pop, L.-N. Pouchet,
A. Ramirez, D. Rodenas, E. Rohou, I. Rosen, U. Shvadron, K. Trifunovic, and
A. Zaks. Acotes project: Advanced compiler technologies for embedded streaming.
International Journal of Parallel Programming, 2010.

George C. Necula, Scott McPeak, Shree Prakash Rahul, and Westley Weimer. CIL:
Intermediate Language and Tools for Analysis and Transformation of C Programs.
In CC, volume 2304 of Lecture Notes in Computer Science, April 2002.

Karina Olmos, Karina Olmos, Eelco Visser, and Eelco Visser. Composing source-to-
source data-flow transformations with rewriting strategies and dependent dynamic
rewrite rules. In International Conference on Compiler Construction, 2005.
Louis-Noél Pouchet, Cédric Bastoul, and Uday Bondhugula. PoCC: the Polyhedral
Compiler Collection, 2010. http://pocc.sf.net.

Daniel J. Quinlan. ROSE: Compiler support for object-oriented frameworks. Par-
allel Processing Letters, 10(2/3):215-226, 2000.

Gabe Rudy, Malik Murtaza Khan, Mary Hall, Chun Chen, and Cha Jacqueline. A
programming language interface to describe transformations and code generation.
In International conference on Languages and compilers for parallel computing,
LCPC’10, pages 136-150, Berlin, Heidelberg, 2011. Springer-Verlag.

Markus Schordan and Dan Quinlan. A source-to-source architecture for user-
defined optimizations. In Modular Programming Languages, volume 2789 of Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, 2003.

Nicolas Ventroux and Raphaél David. SCMP architecture: an asymmetric mul-
tiprocessor system-on-chip for dynamic applications. In International Forum on
Nezt-Generation Multicore/Manycore Technologies, IFMT ’10, 2010.

Martin P. Ward. Assembler to C Migration Using the FermaT Transformation
System. In ICSM, pages 67-76, 1999.

Wikibooks, editor. GNU C Compiler Internals. http://en.wikibooks.org/wiki/
GNU_C_Compiler_Internals, 2006-2009.

Robert P. Wilson, Robert S. French, Christopher S. Wilson, Saman P. Amaras-
inghe, Jennifer M. Anderson, Steve W. K. Tjiang, Shih-Wei Liao, Chau-Wen Tseng,
Mary W. Hall, Monica S. Lam, and John L. Hennessy. Suif: an infrastructure for
research on parallelizing and optimizing compilers. SIGPLAN Not., 1994.

Qing Yi. Automated Programmable Control and Parameterization of Compiler
Optimizations. In ACM, editor, Proceedings of the International Symposium on
Code Generation and Optimization (CGO), Chamonix, France, April 2011.

http://www.aosabook.org/
http://pocc.sf.net
http://en.wikibooks.org/wiki/GNU_C_Compiler_Internals
http://en.wikibooks.org/wiki/GNU_C_Compiler_Internals

	PyPs, a programmable pass manager

