
SESAM/Par4All: A Tool for Joint Exploration of MPSoC
Architectures and Dynamic Dataflow Code Generation

N. Ventroux, T. Sassolas, A. Guerre
CEA, LIST,

Embedded Computing Laboratory
91191 Gif-sur-Yvette CEDEX, France;

nicolas.ventroux@cea.fr

B. Creusillet, R. Keryell
HPC Project

9 route du Colonel Marcel Moraine
92360 Meudon la Forêt, France

beatrice.creusillet@hpc-project.com

ABSTRACT
Due to the increasing complexity of new multiprocessor sys-
tems on chip, flexible and accurate simulators become a ne-
cessity for exploring the vast design space solution. In a
streaming execution model, only a well-balanced pipeline
can lead to an efficient implementation. However with dy-
namic applications, each stage is prone to execution time
variations. Only a joint exploration of the application space
of parallelization possibilities, together with the possible
MPSoC architectural choices, can lead to an efficient em-
bedded system. In this paper, we associate a semi-automatic
parallelization workflow based on the Par4All retargetable
compiler, to the SESAM environment. This new framework
can ease the application exploration and find the best trade-
offs between complexity and performance for asymmetric
homogeneous MPSoCs and dynamic streaming application
processing. A use case is performed with a radio sensing
application implemented on a complete MPSoC platform.

Categories and Subject Descriptors
C.0 [General]: Modeling of computer architecture; C.4
[Per-formance of systems]: Modeling techniques; I.6.4
[Com-puting and modeling]: Simulation and modeling—
Model Validation and Analysis; D.3 [Software]: Program-
ming Languages; D.3.4 [Programming Languages]: Pro-
cessors—compilers, code generation, retargetable compilers

General Terms
Design, Performance

Keywords
MPSoC, processor modeling, TLM, SystemC, simulation,
performance analysis, source-to-source compilation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RAPIDO ’12 January 23 2012, Paris, France
Copyright 2012 ACM 978-1-4503-1114-4/12/01 ...$10.00.

1. INTRODUCTION
The emergence of new embedded applications for telecom,
automotive, digital television and multimedia applications,
has fueled the demand for architectures with higher perfor-
mances, and better chip area and power efficiency. These ap-
plications are usually computation-intensive, which prevents
them from being executed by general-purpose processors. In
addition, architectures must be able to simultaneously man-
age concurrent information flows; and they must all be ef-
ficiently dispatched and processed. This is only feasible in
a multithreaded execution environment. Designers are thus
showing interest in System-on-Chip (SoC) paradigms com-
posed of multiple computation resources connected through
networks that are highly efficient in terms of latency and
bandwidth. The resulting new trend in architectural design
is the MultiProcessor SoC (MPSoC) [1].

Another very important feature of future embedded compu-
tation-intensive applications is the dynamism. Algorithms
become highly data-dependent and their execution time de-
pends on their input data, since decision processes must also
be accelerated. Consequently, on a multiprocessor platform,
optimal static partitioning cannot exist since all the pro-
cessing times depend on the given data and are prone to
non-uniform data accesses. In [2], it is shown that the so-
lution consists in dynamically allocating tasks according to
the availability of computing resources. Global scheduling
should maintain a balanced system load and support work-
load variations that cannot be known off-line. Moreover, the
preemption and the migration of tasks dynamically balance
the computation power between concurrent processes. Only
an asymmetrical approach can implement a global schedul-
ing and efficiently manage dynamic applications.

An asymmetric MPSoC architecture consists of one (some-
times several) centralized or hierarchized control core, and
several homogeneous or heterogeneous cores for computing
tasks. The control core handles the tasks scheduling. In ad-
dition, it performs load balancing through task migrations
between the computing cores when they are homogeneous.
The asymmetric architectures usually have an optimized ar-
chitecture for control. This distinction between control and
computing cores renders the asymmetric architecture more
transistor/energy efficient than the symmetric architectures.

One possible approach to parallelize an application is to
pipeline its execution. This programming and execution
model suits well data oriented applications that consider a

continuous flow of data. An asymmetric MPSoC can dy-
namically distribute the pipeline stages among computing
resources. Only a well-balanced pipeline application will
lead to a good efficiency.

In previous works [3, 4], we developed the SESAM tool to
help the design of new asymmetric MPSoC architectures.
This tool allows the exploration of MPSoC architectures and
the evaluation of many different features (effective perfor-
mance, used bandwidth, system overheads...). In this paper,
we associate the SESAM environment to a semi-automatic
code generation workflow using Par4All [5]. For the first
time, two exploration tools, one for the architecture, one for
the task code generation of dataflow applications, are as-
sociated to create a complete exploration environment for
embedded systems. With the implementation of a signifi-
cant application from radio telecommunication domain (ra-
dio sensing) on a complete asymmetric MPSoC architecture,
we will validate our work and show how the association of
our tools can really help tune both the application and the
architecture.

This paper is organized as follows: Section 2 covers related
works on MPSoC simulators from both industrial and aca-
demic worlds, as well as related works on compilation of
streaming applications. Then, section 3 gives an overview
of the initial SESAM environment. Section 4 presents its
programming model and the available primitives to support
pipelined dataflow applications, while Section 5 depicts the
code generation tool using Par4All. Section 6 presents the
whole framework that associates both the SESAM environ-
ment and Par4All. Section 7 illustrates the performance
results obtained by running a real case embedded applica-
tion on a complete MPSoC architecture implemented with
SESAM. Finally, section 8 concludes the paper by discussing
the presented work.

2. RELATED WORK
Lots of works have been published before on single-
processor, multiprocessor and full-system simulators [6, 7].
Some of them focus on the exploration of specific resources.
For instance, Flash [8] eases the exploration of different
memory hierarchies, or SICOSYS [9] studies only different
Network-on-Chips (NoCs). Taken separately, these tools are
very interesting but a complete MPSoC exploration environ-
ment is needed in order to analyze all architectural aspects
under real application processing case.

Among complete MPSoC simulators, MC-Sim [7] uses a va-
riety of processors, memory hierachies or NoC configurations
but remains cycle-accurate. On the contrary, simulators like
STARSoC [10] offer a rapid design space exploration but
only consider functional level communications. To study
network contentions and the impact of communication la-
tencies, a timed simulation is necessary. Others, like ReSP
[11], use generic processors and cannot take into account in-
struction set specificities. This does not allow to size and to
validate MPSoC architectures. On the contrary, some sim-
ulators, like MPARM [12], are processor specific and do not
allow the exploration of different memory system architec-
tures or different processors, and hence lack flexibility.

Some of the simulators benefit from the genericity of a very

high description level, like Sesame [13] or CH-MPSoC [14].
They use a gradual refine Y-Chart methodology to explore
the MPSoC design space. However, even if they remain very
promising tools, they cannot support complex IPs or MPSoC
structures with advanced networking solutions. Generated
architectures remain very constrained. Less generic projects
exist, like SoCLib [15], but their scope are too limited to fulfil
MPSoC exploration and in particular they cannot support
automatic MPSoC generation to analyze its parameters.

Some very interesting projects [16, 17, 18] make a model of a
large set of MPSoC platforms. Nonetheless, these solutions
do not propose a rich set of Network-on-Chips (NoCs), and
it is not possible to easily integrate a centralized element to
dynamically allocate tasks to resources. The programming
model consists in statically allocating threads onto proces-
sors, and does not allow the design of architectures opti-
mized for dynamic applications.

There is a lot of studies about the compilation of stream-
ing applications for multicore systems. They first differ in
the abstractions they provide to express task parallelism:
specific languages [19, 20], extensions of subsets of standard
languages such as C [21], or pragmas [22, 23]. Our approach
belongs to the last category, with the difference that the user
does not need to specify the input and output data. They
are computed internally using array region analyzes [24].

Then, the studies address the difficulty of providing an op-
timal task scheduling for the target architecture, either at
compile time (static scheduling [19]) or through a runtime
(dynamic scheduling [22, 25]). Because asymmetric MP-
SoC architectures already come with a dynamic scheduling
of tasks, Par4All has only to generate a simple task graph
representing task dependencies to control the application
pipeline. Besides, computation tasks rely on specific com-
munication mechanisms to support a streaming execution.

Finally, to the authors’ knowledge, there is no published
work on a complete simulation tool chain that supports the
exploration of asymmetric MPSoC architectures and asso-
ciates a semi-automatic code generation for streaming ap-
plications.

3. SESAM OVERVIEW
SESAM is a tool that has been specifically built up to ease
the design and the exploration of asymmetric multiprocessor
architectures [3]. SESAM can also be used to analyze and
optimize the application parallelism, as well as control man-
agement policies. This tool is made of various instruction
set simulators (MIPS, PowerPC, Sparc), networks-on-chips
(multibus, mesh, torus, multistage, ring), a DMA, a mem-
ory management unit, caches, memories and different con-
trol solutions to schedule and dispatch tasks. All simulator
provided blocks can be timed.

This framework is described with the SystemC description
language, and allows MPSoC exploration at the TLM level
with fast and cycle-accurate simulations. Besides, SESAM
uses approximate-timed TLM with explicit time to provide a
fast and accurate simulation of highly complex architectures.
This model, described in [26] uses the Transactional Level
Modeling (TLM) approach coupled with timed communica-

tions. This solution allows the exploration of MPSoCs while
reflecting the accurate final design. Regarding the commu-
nications, we point out a 90% accuracy compared to a fully
cycle-accurate simulator. Time information is necessary to
evaluate performances and to study communication needs
and bottlenecks. It supports co-simulation within the Mod-
elSim environment [27] and takes part in the MPSoC de-
sign flow, since all the components are described at different
hardware abstraction levels.

To ease the exploration of MPSoCs, all the components and
system parameters are set at run-time from a parameter
file without platform recompilation. It is possible to define
the memory map, the applications that must be loaded, the
number of processors and their type, the number of local
memories, their size, the parameters of the instruction and
data caches, memory latencies, network latencies, network
topologies (torus, ring, mesh...) etc. More than 160 parame-
ters can be modified. For instance, we can study the pipeline
length impact of processing elements [28]. Moreover, each
simulation brings more than 250 different platform statistics.
That helps the designer size the architecture. For example,
SESAM collects the miss rate of the caches, the memory al-
location history, the processor occupation rate, the number
of preemptions, the time spent to load or save the context
of tasks, or the effective used bandwidth of each network.

Energy consumption is a very important parameter to be
considered at each step of the design process. Different solu-
tions have been implemented into the SESAM framework to
allow the exploraiton of different energy consumption strate-
gies based on DPM an DVFS modes. These strategies can
exploit filling rate of shared buffers to dynamically balance
the streaming flow [29]. In addition, in order to estimate
the energy consumption of processors according to appli-
cations, PowerArchC has been developed and implemented
into SESAM [30].

A script can be used to automatically generate several sim-
ulations by varying different parameters in the parameter
file, as well as different applications. An Excel macro im-
ports these statistics to study their impact on performances.
In addition, SESAM offers the possibility to automatically
dispatch all the simulations to different host PCs. For ex-
ample, 400 simulations can be carried out with 12 hosts in
less than one hour and a half [3].

Debugging the architecture is possible with a specific GNU
GDB [31] implementation. In the case of a dynamic task al-
location modeling, it is not possible to know off-line where a
task will be executed. Therefore, we build up a hierarchical
GDB stub that is instantiated at the beginning of the sim-
ulation. A GDB instance, using the remote protocol, sends
specific debug commands to dynamically carry out break-
points, watchpoints, as well as step by step execution, on
an MPSoC platform. This unique multiprocessor debugger
allows the task debugging even with dynamic migration be-
tween the cores. Moreover, it is possible to simultaneously
debug the platform and the code executed by the processing
resources.

4. SESAM PROGRAMMING MODEL
The programming model of SESAM is specifically adapted
to dynamic applications and global scheduling methods. Ob-
viously, it is inconceivable to carry out a generic program-
ming model for all asymmetrical MPSoCs. Nonetheless, it
is possible to add new programming models. The program-
ming model is based on the explicit separation of the control
and the computation parts.

The control task is a Control Data Flow Graph (CDFG)
extracted from the application, which represents all control
and data dependencies. The control task handles the compu-
tation task scheduling and other control functionalities, like
synchronizations and shared resource management. It must
be written in a dedicated and simple assembly language.
Each control task, for each different application, needs to de-
fine: the number of computation tasks, the binary file names
corresponding to these tasks, and their necessary stack mem-
ory size. Then, we must specify which are the first and last
tasks of the application. Finally, for real-time task schedul-
ing, the deadline of the application, as well as the worst case
execution time of each task, must be defined. The processor
type of each task is also specified and this information is
used during the allocation process. A specific compilation
tool is used for the binary generation.

A computation task is a standalone program, which can use
the SESAM Hardware Abstraction Layer to manage shared
memory allocations and explicit synchronizations. This
HAL is summarized in Table 1. It can be extended to ex-
plore other memory management strategies. In the SESAM
framework, the memory space can be implemented with sev-
eral banks or a single memory. The Memory Management
Unit (MMU) manages the memory space and shares it be-
tween all active tasks.

HAL functions Description

Memory allocation functions
sesam reserve data() reserve pages

sesam data assignation() allocate the data
sesam free data() deallocate the data

sesam chown data() change the data owner
Data access functions

sesam read(), sesam write() read or write a data
sesam read burst() read a finite nb of bytes
sesam write burst() write a finite nb of bytes
sesam read byte() read a byte
sesam write byte() write a byte

Debug function
sesam printf() display debug

Page synchronization functions
sesam wait page() wait for a page
sesam send page() page is ready

Table 1: Hardware Abstraction Layer of SESAM

This HAL provides memory allocation, read/write shared
memory access, debugging and page synchronization func-
tions. Each data is defined by a data identifier, which
is used to dialog between the memory management unit
and the computation tasks. For instance, the function call
sesam -data assignation(10,4,2) allocates 4 pages for the
data ID 10 with 2 consumers for this data. The function call
sesam write- data(10,&c,4) writes the word c starting from
the 4th byte of the data ID 10. The sesam wait page func-

tion is a blocking wait method. The task waits for the avail-
ability of a page in only read or write mode. When all con-
sumers have sent a write availability, the sesam send page
function is used to inform the memory management unit
that the content of the page is ready to be read, or that
its content has become useless for the consumer task. The
memory management unit can then release the page access
rights and accept future writes. This hand-shake protocol is
a semaphore-like processing and guarantees the data consis-
tency.

When a sesam send page is sent to the MMU, the status of
the page is updated. If the page was in a write mode, the
consumer number is checked and updated. To distinguish
multiple requests of a single task from multiple consumers’
requests, a consumer list is maintained for each page. When
all consumers have read the page, the page status changes
and it becomes possible to write again into it. When a
sesam wait page is sent to the MMU, the request is pushed
into a wait dispo list request and the information is sent
to the controller. As soon as the page becomes available,
the MMU sends to the processor an answer that unlocks
the waiting sesam wait page function. Because a task can
dynamically be preempted by the controller and migrated
to another processing element, the MMU must be able to
address the processor executing the waiting task. Thus, a
sesam wait page is sent again when the task is resumed on
the new processor in order to update the processing element
address. This protocol is more depicted in [4].

With a streaming execution, the stages of the application
pipeline must communicate through these synchronization
primitives to access their shared buffers. A consumer must
wait for the shared data to be written before reading it, in
order to keep consistent data. To maximize the parallelism
in the pipeline and ensure sufficient concurrent executions,
the granularity of data synchronizations must be well-sized.
A fine-grain synchronization level generates an important
hardware and control overhead to implement all semaphores
used to store the access status information. Thus, all shared
data accesses are at the page level.

5. CODE GENERATION USING PAR4ALL
To complete the simulation tool chain, the Par4All retar-
getable compiler provides a source-to-source code generator
for the SESAM HAL (see Figure 1). It relies on the PIPS
parallelizing compiler [32] and on a specific runtime to re-
lieve the programmer from generating each task code and the
corresponding communications through the SESAM buffers.
Hence, Par4All provides the possibility of programming in
the usual sequential way (as in the code of Figure 3), and
to focus on the choice of the computation kernels which will
form the bases of the final application tasks.

The input code must be written in C and meet the Par4All
coding rules, which mainly restrict the use of pointers. The
computation kernels must have a structured control flow, be
all declared in the main function, and must not be nested.
Hence, the pragmas which designate the computation ker-
nels can be placed before any structured statement such as
a loop nest or a function call for instance.

Isolating the data of a pre-determined computation kernel

Figure 1: Par4All Compilation workflow

(a) (b) (c)

Figure 2: Programming models

from its environment to externalize its memory space on
a distant medium, is the fundamental operation used in
Par4All to generate code for GPUs [33, 34]. It includes the
allocation of local data and the generation of communica-
tions to retrieve the original values from the source medium,
and to send back the computed values. Hence the idea to
reuse this component to generate code for the different tasks,
including inter-tasks communications.

However, the original model for a CPU/GPU couple enforces
that the communications are performed from/to a unique
CPU process which collects the data (Figure 2(a)), ensuring
the consistency of the latter. But keeping a unique process
to gather the data to/from the tasks would sequentialize the
whole application (Figure 2(b)). Therefore, we have gener-
alized the model by introducing one server task for each
datum implied in inter-tasks communications (Figure 2(c)).
Because kernel tasks communicate only though server tasks,
it ensures data consistency while preserving inter-tasks par-
allelism.

Another advantage of our model, is to avoid deadlocks, be-
cause, as shown in Figures 4 and 5, the codes finally gen-
erated for computation tasks and server tasks (here from
the code of Figure 3) are completely symmetrical, and re-
tain the control flow of the initial code. Thus, even if the
execution conditions of communications are not known at
compile time, they are the same on the server tasks and on
the computation tasks during the execution, and the runtime
ensures that there is always one, and solely one, consumer
access per produced page of a communication buffer. This
relieves the user from the painful debugging of a new parallel
application every time he experiments a new task splitting
strategy.

If we now look at the code generated for the first kernel task
(Figure 4), we see that a new local variable (P4A__a__0) is
allocated, and that the kernel performs its computation on
this variable. Then, the values are copied back to the orig-

i n t main ()
{

i n t i , t , a [2 0] , b [2 0] ;
f o r (t=0; t < 100 ; t++) {

k e r n e l t a s k s 1 :
f o r (i =0; i <10; i++) a [i] = i+t ;

k e r n e l t a s k s 2 :
f o r (i =10; i <20; i++) a [i] = 2∗ i+t ;

k e r n e l t a s k s 3 :
f o r (i =10; i <20; i++) p r i n t f (”a[%d] = %d\n” , i , a [i]) ;

}
return (0) ;

}

Figure 3: Running example

inal variable (a) using the communication functions of the
Par4All runtime, and the freeing function is called in case
the local variable is not used anymore. Notice that the exe-
cution of the kernel is conditioned by a boolean value defined
in the scmp_buffers.h header file. This file is automatically
generated by Par4All and uses the value defined on the first
line of the file (here kernel_task_1) to set the boolean val-
ues guarding the execution of the kernels and those describ-
ing how the tasks use the different buffers. For instance the
value kernel_task_1_p is set to 1 if kernel_task_1 is de-
fined, and to 0 otherwise. Thus, the first kernel is executed
by the first kernel task, and is skipped by all the other tasks.
Similarly, P4A__a__0_prod_p is set to 1 if the task produces
data in buffer P4A__a__0, and 0 otherwise. These values de-
termine the behavior of the allocation and communications
functions, which are not executed by the tasks which are not
concerned.

The code of the server task corresponding to the original
variable a (Figure 5) is the same, except for the communi-
cation functions which have specific server versions1.

6. SESAM AND PAR4ALL
SESAM alone is a very efficient exploration framework to
design asymmetric multiprocessors on chip. With the many
parameters we can tune, it is possible to define the best
trade-off to design a complete MPSoC. However, perfor-
mances of an embedded system also depend on the appli-
cation itself. The way it is implemented and parallelized
can have a significant impact. With streaming applications,
an unbalanced application pipeline can lead to very poor
performances, even if the architecture parameters are well-
sized. As a result, less computation-intensive tasks spend a
long time waiting for available data. For this reason, we de-
cided to associate Par4All to SESAM in order to also allow
the exploration of the application, and so to design a com-
plete efficient system. This new framework supports only
homogeneous computing resources.

As shown in Figure 6, Par4All generates the control task,
which is a CDFG graph, and all computation tasks source
codes based on the SESAM HAL corresponding to the appli-
cation pipeline, including kernel and server tasks. Par4All
also generates an initial and a final task, as well as the Make-
file to build the executables. The computation task executa-
bles are generated using a C cross-compiler corresponding
to the computing resource type. A specific compiler pro-
vided by the SESAM framework is used for the control task.
Depending on the execution results, it is then possible to
change the kernel tasks by modifying the pragmas used in

1More details on the Par4All runtime implementation for
SESAM can be found in [35].

the input application, and run it again through Par4All, to
better adapt the different stage lengths in the application
pipeline.

SESAM

Processing
Resources

Control
Manager

Compiled Application

Application

Control task

BinaryBinaries

Computation
Tasks

Par4All code
generation

SESAM
HAL

SESAM
HAL

SESAM
HAL

Cross-compilation Compilation

O
pt

im
iz

at
io

n
lo

op

Figure 6: SESAM and Par4All exploration tool

With asymmetric MPSoCs, irregular processing length can
be partially hidden. Because they have been designed to
deal with dynamism, they can preempt and migrate tasks
to balance computing resource’s load between homogeneous
resources. A waiting task can be preempted to be replaced
by a ready one in order to increase the resource occupation.
Thus, the greater the number of extracted independent and
parallel tasks, the more the application can be accelerated
at runtime. Therefore, in such a dynamic execution envi-
ronment, if the pipeline is long enough to always have ready
tasks to execute it is not necessary to get an equal length
between the stages. On the same time, increasing the num-
ber of pipeline tasks increase the memory need and control
overhead. Indeed, the number of shared buffers depends on
the number of stages. In addition, increasing the number of
synchronizations generates extra control overhead, since we
have a centralized controller.

With these new capabilities, the SESAM/Par4All frame-
work can ease the analysis of the impact of different par-
allelized code versions on performances, and efficiently size
the MPSoC platform. It can help to explore the design space
in order to build an efficient complete system. We now have
to analyze and quantitatively evaluate this new framework
on a real application in order to demonstrate its interest.

7. RESULTS
Our objectives here are two-fold: demonstrate the SESAM’s
capabilities to support the execution of dataflow applica-
tions on asymmetric MPSoC architectures, and show the
advantages of using Par4All to port these applications to
the SESAM environment. To do this we have considered
a generic asymmetric MPSoC representative of the SCMP
architecture [36].

As shown in Figure 7, this architecture is made of homoge-
neous MIPS32 processing elements (MIPS32R2 ISA compli-
ant functional ISSs) and two DMAs for the communication
with the external data memory. These devices communi-
cate with 32 shared memories through a 64-bit multibus
data network, where each memory bank is 128KB. These
memories are locally shared and physically distributed. The
data network and memory latencies are 2 cycles. All the
processors use two private 4KB instruction and 8KB data

#de f i n e k e r n e l t a s k 1 1
#inc lude ” scmp buf f e r s . h”
. . .
i n t main ()
{

P4A scmp reset () ;
i n t i , t , a [2 0] , b [2 0] ;
f o r (t = 0 ; t <= 99; t += 1) {

{
i n t (∗ P4A a 0) [1 0] = (in t (∗) [1 0]) 0 ;
P4A acce l mal loc ((void ∗∗) &P4A a 0 , s i z e o f (i n t)∗10 ,

P4A a 0 id , P4A a 0 p rod p | | P4A a 0 con s p ,
P4A a 0 prod p) ;

i f (k e r n e l t a s k 1 p) // true in t h i s task

f o r (i = 0 ; i <= 9; i += 1) (∗ P4A a 0) [i −0] = i+t ;

P4A copy f rom acce l 1d (s i z e o f (i n t) ,20 ,10 ,0 ,

P4A sesam serve r a p?&a [0] : NULL, ∗P4A a 0 ,
P4A a 0 id , P4A a 0 p rod p | | P4A a 0 con s p) ;

P4A ac c e l f r e e (P4A a 0 , P4A a 0 id ,
P4A a 0 prod p | | P4A a 0 con s p ,
P4A a 0 prod p) ;

}
. . .
}

Figure 4: Kernel task code

#de f i n e P4A sesam server a 1
#inc lude ” scmp buf f e r s . h”
. . .
i n t main ()
{

P4A scmp reset () ;
i n t i , t , a [2 0] , b [2 0] ;
f o r (t = 0 ; t <= 99; t += 1) {

{
i n t (∗ P4A a 0) [1 0] = (in t (∗) [1 0]) 0 ;
P4A acce l ma l loc ((void ∗∗)&P4A a 0 , s i z e o f (i n t)∗10 ,

P4A a 0 id , P4A a 0 prod p | | P4A a 0 cons p ,
P4A a 0 p rod p) ;

i f (k e r n e l t a s k 1 p) // f a l s e in t h i s task

f o r (i = 0 ; i <= 9; i += 1) (∗ P4A a 0) [i −0] = i+t ;

P4A copy f r om acc e l 1d s e rv e r (s i z e o f (i n t) ,20 ,10 ,0 ,

P4A sesam server a p?&a [0] :NULL,∗ P4A a 0 ,
P4A a 0 id , P4A a 0 prod p | | P4A a 0 con s p) ;

P4A ac c e l f r e e (P4A a 0 , P4A a 0 id ,
P4A a 0 p rod p | | P4A a 0 con s p ,
P4A a 0 p rod p) ;

}
. . .
}

Figure 5: Server task code

caches. Each cache is a 4-way set associative and implements
a write-back protocol. The external network-on-chip (NoC)
is a 2-cycle-latency 32-bit simple bus with a round-robin ar-
biter. External memories have a latency of 4 cycles. All
latencies have been evaluated through partial TSMC 45nm
ASIC synthesis and normalized in relation to the PE fre-
quency. The central control manager is a 5-stage RISC pro-
cessor named AntX [37] with two instruction and data caches
of 2KB each. It executes a microkernel, which supports the
dynamic scheduling and allocation of tasks on PEs. An in-
terrupt controller is used to communicate with the comput-
ing resources. The architecture is also composed of a code
loading unit (CLU) that can prefetch task instruction codes
into shared memories, as well as a memory management unit
(MMU). All devices are timed and only communications are
approximate-timed transactions.

Figure 7: SESAM infrastructure

The original application is a radio sensing function devel-
opped by Thales Communication France, which aims to de-
tect the unused spectra and to share them without interfer-
ence with other users. In other words, the already used spec-
tra are detected in order to identify spectrum holes. This
application is used in spectrum monitoring and electronic
warfare devices. To validate our approach, four parallelized
versions have been obtained from the original sequential ap-
plication:

• Manual is a manually parallelized version, very close
to the original sequential code.

• Semi-auto v1 is a first parallelized version obtained
with Par4All using 8 initial kernel tasks.

• Semi-auto v2 is a second parallelized version obtained
with Par4All using 17 initial kernel tasks which ap-
proximately correspond to the tasks of the manual ver-
sion.

• Manual opt is the last manually optimized version.

Table 2 summarizes their complexity and the time spent to
develop them from the sequential application and then from
the first manual or semi-automatic parallel version. In the
manual versions, a double buffering communication scheme
is used to maximize the concurrency between pipelined
tasks. With Par4All, communications between two kernel
tasks through a server task involve two shared buffers. Thus,
tasks can independently execute the next frame from the
previous pipeline stage results.

Applications nb computation tasks time

Manual 18 7 days
Semi-auto V1 19 (8 kernel + 9 server tasks) 1/2 day
Semi-auto V2 31 (17 kernel + 12 server tasks) 30min
Manual opt 40 5 days

Table 2: Application description and time to developped

them.

Figure 8-a shows that the total execution time can be heav-
ily impacted by the total data wait time. This overhead is
representative of an unbalanced pipeline. It even reaches
77% with the first version obtained with Par4All. The sec-
ond version improves the workload balancing in extending
the application pipeline, and reducing in the same time the
impact of longer stages. Results are even close to the first
manual version, and this with much less development ef-
fort. We can see on Figure 8-b that the dynamic control
of the architecture even partially hides the unbalance with
4PEs. Unfortunately, the number of tasks remains limited
for 8PEs. Besides, Figure 8-a shows that the server task
impact on the computation length remains moderate, and
the Par4All strategy does not influence too much the overall
performances compared to a manual implementation.

In Figure 8-c, the maximum memory use is depicted. As
expected, due to server tasks, versions obtained with Par4All

double the memory use. But, even manual versions need to
increase the number of buffers to get sufficient parallelism.
However, with an equivalent number of kernel tasks, Par4All
applications still increase the necessary memory of 65%.

Finally, Figure 8-d shows the results obtained with the last
manual optimized version. The streaming description of the
application and the use of the streaming protocol to access
shared data can have a non-negligible cost. Many accesses
to a central device, such as the MMU, to get the autho-
rization to write or read each page of a buffer, could have
a very negative impact on performances. Only simulations
help the evaluation of the potential benefit. However, we
demonstrate that the parallelism obtained with a stream-
ing execution can be important. We get an acceleration
of 6.23 and an occupation rate beyond 97% with 8 PEs.
These results depend on the control overhead, which must
be minimized. This is why, in our architecture, we use a
microkernel especially developed to optimize the reactivity
of the control.

These results show interesting benefits when using our mixed
SESAM/Par4All framework. Par4All brings a very conve-
nient way to generate multiple parallelized version of the
application in order to find the right balance between the
tasks, with a moderate impact on performances. Then, the
SESAM environment brings to the designer the possibility to
guide the application optimization with Par4All, and to size
the architecture to the application needs. We also demon-
strate that a streaming execution can be very efficient with
a dynamic control of the pipeline execution.

8. CONCLUSION
This paper presented the association of two exploration
tools, one for the architecture, one for the task code gen-
eration of dataflow applications, to create a complete explo-
ration environment for embedded systems.

The efficiency of our new framework were studied through
the simulation of a complete asymmetric MPSoC architec-
ture running a radio sensing application. We demonstrated
that SESAM can bring to the designer the possibility to
guide the application optimization with Par4All, and that
Par4All brings a very convenient way to generate multiple
parallelized version of the application in order to find the
right balance between the tasks, with a moderate impact on
performances.

The next step could be to enhance Par4All to avoid gener-
ating server tasks when this is decidable at compile time,
to reach the same efficiency as manually generated applica-
tions. Another interesting extension would consist in syn-
thesizing information provided by SESAM in order to au-
tomatically make Par4All converge on the right adequation
between the MPSoC platform and the application.

Acknowledgements
The authors would like to thanks G. Blanc and R. David
for their contributions on SESAM, and the members of the
PIPS team for their help, and in particular F. Irigoin for
his careful reading of a previous report. The authors would
also like to thank F. Broekaert from Thales Communications

France for providing the radio-sensing application. Part of
the research leading to these results has received funding
from the ARTEMIS Joint Undertaking under grant agree-
ment No. 100029.

9. REFERENCES
[1] A. A. Jerraya and W. Wolf. Multiprocessor Systems-on-Chips.

Elsevier, 2005.

[2] M. Bertogna, M. Cirinei, and G. Lipari. Schedulability Analysis
of Global Scheduling Algorithms on Multiprocessor Platforms.
IEEE Transactions on Parallel and Distributed Systems,
20(4):553–566, April 2008.

[3] N. Ventroux, A. Guerre, T. Sassolas, L. Moutaoukil,
C. Bechara, and R. David. SESAM: an MPSoC Simulation
Environment for Dynamic Application Processing. In IEEE
International Conference on Embedded Software and Systems
(ICESS), Bradford, UK, July 2010.

[4] N. Ventroux, T. Sassolas, R. David, G. Blanc, A. Guerre, and
C. Bechara. SESAM Extension For Fast MPSoC Architectural
Exploration And Dynamic Streaming Application. In
IEEE/IFIP International Conference on VLSI and
System-on-Chip (VLSI-SoC), Madrid, Spain, September 2010.

[5] HPC Project. Par4All, automatic parallelization,
http://www.par4all.org.

[6] J. J. Yi and D. J. Lilja. Simulation of computer architectures:
simulators, benchmarks, methodologies, and recommendations.
IEEE Transactions on Computers, 55(3):268–280, March 2006.

[7] J. Cong, K. Gururaj, G. Han, A. Kaplan, M. Naik, and
G. Reinman. MC-Sim: An efficient simulation tool for MPSoC
designs. In IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pages 364–371, San Jose,
USA, November 2008.

[8] J. Gibson et al. FLASH vs. (Simulated) FLASH: Closing the
simulation loop. In ACM ASPLOS, Pittsburgh, USA, March
2000.

[9] V. Puente, J. Gregorio, and R. Beivide. SICOSYS: an
integrated framework for studying interconnection network
performance in multiprocessor systems. In Euromicro
Workshop on Parallel, Distributed and Network-based
Processing, Canary Islands, Spain, January 2002.

[10] S. Boukhechem and E.-B. Bouernnane. TLM Platform Based
on SystemC For STARSoC Design Space Exploration. In
NASA/ESA Conference on Adaptive Hardware and Systems,
Noordwijk, The Netherlands, June 2008.

[11] G. Beltrame, C. Bolchini, L. Fossati, A. Miele, and D. Sciuto.
ReSP: A non-intrusive Transaction-Level Reflective MPSoC
Simulation Platform for design space exploration. In Asia and
South Pacific Design Automation Conference (ASPDAC),
pages 673–678, Seoul, Korea, January 2008.

[12] L. Benini, D. Bertozzi, A. Bogliolo, F. Menichelli, and
M. Olivieri. MPARM: Exploring the Multi-Processor SoC
Design Space with SystemC. VLSI Signal Processing Systems,
41(2):169–182, 2005.

[13] A.D. Pimentel, C. Erbas, and S. Polstra. A Systematic
approach to exploring embedded system architectures at
multiple abstraction levels. IEEE Transactions on Computers,
55(2):99–112, February 2006.

[14] H. Shen, P. Gerin, and F. Pétrot. Configurable Heterogeneous
MPSoC Architecture Exploration Using Abstraction Levels. In
IEEE/IFIP International Symposium on Rapid System
Prototyping, Paris, France, June 2009.

[15] E. Viaud, F. Pêcheux, and A. Greiner. An efficient TLM/T
modeling and simulation environment based on conservative
parallel discrete event principles. In DATE, Nice, France, April
2009.

[16] A. Wieferink et al. A System Level Processor/Communication
Co-Exploration Methodology for Multi-Processor
System-on-Chip Platforms. In International Conference on
Design, Automation and Test in Europe (DATE), Paris,
France, February 2004.

[17] P. Paulin, C. Pilkington, and E. Bensoudane. StepNP: A
System-Level Exploration Platform for Network Processors.
IEEE Design & Test, 19(6):17–26, November 2002.

[18] D. August, J. Chang, S. Girbal., D. Gracia-Perez.,
G. Mouchard, D. Penry, O. Temam, and N. Vachharajani.
UNISIM: An Open Simulation Environment and Library for
Complex Architecture Design and Collaborative Development.
Computer Architecture Letters, 6(2):45–48, 2007.

[19] M. Gordon et al. A stream compiler for communication-exposed

a) b)

c) d)

��

���

����

����

����

����

����

�

���

�

���

�

���

�

���

��	
���
�� ���
�� ���
��
��

��

���
��
��

��

���
��

���

��
��
�
�
�
�
�
��
�

!
"
�
�#
�
$
%&
'
(

0

1

2

3

4

5

6

7

8

9

10

0

0,5

1

1,5

2

2,5

3

3,5

Manual Semi-auto v1 Semi-auto V2 Manual opt

A
cc

e
le

ra
ti

o
n

To
ta

l e
x
e

cu
ti

o
n

 l
e

n
g

th
 (

1
0

)

cy
cl

e
s)

Control overhead

Total data waits

Computation length

*

*+,

-

-+,

.

.+,

/

/+,

0 1 0 1

23
45
6
7
8
7
9:
4;
3
<
67
<
=
4>
?@
A
B
9C
96
7
DE

FGHIJK LM NOP

QRSTURV RWXUYXZ[

\RTZV [ZTZ]Z^T_

QR`abTZT^RS VXScTY

d- d.

e

f

g

h

i

j

k

l

e

emj

f

fmj

g

gmj

h

hmj

i

imj

j

nopqorstuv f g i w

x
yy
z
{z
|}
~�
�
�

��
~}
{
z
�
z
y�
~�
�
�
{z
�
�
~�
��
�
�
y�
y{
z
��

������ �� ���

��rs��v ��o��ou�

��suv �usu uts¡

��¢£qsust�r vor¤s�

Figure 8: Radio sensing application results on a MPSoC platform with a streaming execution (except with the

sequential version): (a) total execution time of the different parallelized version of the application on 8 processing

elements (MIPS32 processors); (b) total execution time of semi-automatic parallelized version of the application on

4 and 8 processing elements; (c) total memory occupation of the different parallelized version of the application; and

(d) total execution time of the manual last optimized version depending on the processing element (PE) number.

architectures. In Proceedings of the 10th international
conference on Architectural support for programming
languages and operating systems, ASPLOS-X, pages 291–303,
New York, NY, USA, 2002. ACM.

[20] H. Vandierendonck, P. Pratikakis, and D.S. Nikolopoulos.
Parallel programming of general-purpose programs using
task-based programming models. In Proceedings of the 3rd
USENIX conference on Hot topic in parallelism, HotPar’11,
pages 13–13, Berkeley, CA, USA, 2011. USENIX Association.

[21] Y. Choi, Y. Lin, N. Chong, S. Mahlke, and T. Mudge. Stream
Compilation for Real-Time Embedded Multicore Systems. In
IEEE/ACM International Symposium on Code Generation
and Optimization (CGO), CGO ’09, pages 210–220,
Washington, DC, USA, 2009. IEEE Computer Society.

[22] J.M. Perez, R.M. Badia, and J. Labarta. A dependency-aware
task-based programming environment for multi-core
architectures. In 2008 IEEE International Conference on
Cluster Computing, September 2008.

[23] E. Ayguade et al. The design of openmp tasks. IEEE
Transactions on Parallel and Distributed Systems, 20(3),
November 2009.

[24] B. Creusillet and F. Irigoin. Interprocedural Array Region
Analyses. International Journal of Parallel Programming
(special issue on LCPC), 24(6):513–546, 1996.

[25] C. Augonnet, S. Thibault, R. Namyst, and P-A. Wacrenier.
StarPU: a unified platform for task scheduling on
heterogeneous multicore architectures. Concurrency and
Computation: Practice and Experience, 2010.

[26] A. Guerre, N. Ventroux, R. David, and A. Merigot.
Approximate-Timed Transaction Level Modeling for MPSoC
Exploration: a Network-on-Chip Case Study. In Euromicro
Conference on Digital System Design (DSD), Patras, Greece,
August 2009.

[27] ModelSim. http://www.model.com/.

[28] C. Bechara, N. Ventroux, and D. Etiemble. Towards a
Parameterizable Cycle-Accurate ISS in ArchC. In ACS/IEEE
International Conference on Computer Systems and

Applications (AICCSA), Hammamet, Tunisia, May 2010.

[29] T. Sassolas, N. Ventroux, N. Boudouani, and G. Blanc. A
Power-Aware Online Scheduling Algorithm for Streaming
Applications in Embedded MPSoC. In IEEE International
Workshop on Power and Timing Modeling, Optimization and
Simulation (PATMOS), Grenoble, France, September 2010.

[30] T. Gupta, C. Bertolini, O. Heron, N. Ventroux, T. Zimmer, and
F. Marc. High Level Power and Energy Exploration using
ArchC. In IEEE International Symposium on Computer
Architecture and High Performance Computing
(SBAC-PAD), Petrópolis, Brazil, October 2010.

[31] The GNU GDB project. http://www.gnu.org/software/gdb/.

[32] M. Amini, C. Ancourt, F. Coelho, B. Creusillet, S. Guelton,
F. Irigoin, P. Jouvelot, R. Keryell, and P. Villalon. PIPS Is not
(only) Polyhedral Software. In First International Workshop
on Polyhedral Compilation Techniques, IMPACT, Chamonix,
France, April 2011.

[33] S. Guelton. Building Source-to-Source Compilers for
Heterogeneous Targets. PhD thesis, ENSTB, 2011.

[34] S. Guelton, R. Keryell, and F. Irigoin. Compilation pour cible
hétérogènes: automatisation des analyses, transformations et
décisions nécessaires. In 20ème Rencontres Francaises du
Parallélisme, Renpar, Saint Malo, France, May 2011.

[35] B. Creusillet. Automatic Task Generation on the SCMP
architecture for data flow applications.
http://www.par4all.org/documentation/publications, 2011.

[36] N. Ventroux and R. David. SCMP Architecture: An
Asymmetric Multiprocessor System-on-Chip for Dynamic
Applications. In ACM International Forum on Next
Generation Multicore/Manycore Technologies (IFMT),
Saint-Malo, France, May 2010.

[37] C. Bechara, A. Berhault, N. Ventroux, S. Chevobbe,
Y. Lhuillier, R. David, and D. Etiemble. A Small Footprint
Interleaved Multithreaded Processor for Embedded Systems. In
IEEE International Conference on Electronics, Circuits, and
Systems (ICECS), Beirut, Lebanon, December 2011.

