
PIPS Is not (just) Polyhedral Software
Adding GPU Code Generation in PIPS

Mehdi AMINI1,3 Corinne ANCOURT1 Fabien COELHO1 Béatrice CREUSILLET3 Serge
GUELTON2 François IRIGOIN1 Pierre JOUVELOT1 Ronan KERYELL3 Pierre VILLALON3

1MINES ParisTech firstname.lastname@mines-paristech.fr 2Télécom Bretagne firstname.lastname@telecom-bretagne.eu
3HPC Project firstname.lastname@hpc-project.com

Abstract
Parallel and heterogeneous computing are growing in audience
thanks to the increased performance brought by ubiquitous many-
cores and GPUs. However, available programming models, like
OPENCL or CUDA, are far from being straightforward to use. As
a consequence, several automated or semi-automated approaches
have been proposed to automatically generate hardware-level codes
from high-level sequential sources.

Polyhedral models are becoming more popular because of their
combination of expressiveness, compactness, and accurate abstrac-
tion of the data-parallel behaviour of programs. These models pro-
vide automatic or semi-automatic parallelization and code transfor-
mation capabilities that target such modern parallel architectures.

PIPS is a quarter-century old source-to-source transformation
framework that initially targeted parallel machines but then evolved
to include other targets. PIPS uses abstract interpretation on an in-
teger polyhedral lattice to represent program code, allowing linear
relation analysis on integer variables in an interprocedural way. The
same representation is used for the dependence test and the convex
array region analysis. The polyhedral model is also more classically
used to schedule code from linear constraints.

In this paper, we illustrate the features of this compiler infras-
tructure on an hypothetical input code, demonstrating the combina-
tion of polyhedral and non polyhedral transformations. PIPS inter-
procedural polyhedral analyses are used to generate data transfers
and are combined with non-polyhedral transformations to achieve
efficient CUDA code generation.

Keywords Heterogeneous computing, convex array regions,
source-to-source compilation, polyhedral model, GPU, CUDA,
OPENCL.

1. Introduction
Parallelism has been a research subject since the 50’s and a niche
market with vector machines, since the 70’s, and parallel ma-
chines, since the 80’s. Today, parallelism is the only viable option
to achieve higher performance with lower electrical consumption.
The trend in current architectures is toward higher parallelism and
heterogeneity in all application domains, from embedded systems
up to high-end supercomputers.

To ease vector machine programming, automatic vectorizers
were developed in the 80’s. The PIPS project began just 23 years
ago: it was a source-to-source Fortran infrastructure designed to be
independent of the target language. It used an abstract interpretation
based on a polyhedra lattice with sparse linear algebra support to
achieve interprocedural parallelization of ECG signal processing
and of scientific code [24, 34].

With the development of cheaper and more powerful parallel
computers in the 80’s as an alternative to vector computers, auto-
matic parallelization became an important and highly-investigated
research topic, and was incorporated into PIPS. Automatic paral-
lelization in PIPS also relied on polyhedral and linear algebra foun-
dations, a specific mathematical approach developed in France.

However, due to the overly high expectations on automatic
vectorization and parallelization to solve the difficulties of high-
performance programming, the domain was deserted after decades
of research. Some teams have been in the polyhedral core devel-
opment from the beginning with an interest in parallelization [34]
and code analysis [12]. This has evolved into different research
streams including polyhedral models, which are exact representa-
tions of restricted programs to give optimal solutions [17], approxi-
mate representations, which compile real software as a whole [24],
and theorem-proving frameworks, that reason about facts and prop-
erties of programs [19].

After 20 years of mostly divergent developments, the three ap-
proaches are beginning to converge, not only because of the com-
plementary characteristics and cross-dependence that they exhibit
in their maturity but also because the growth of the parallel ma-
chine market has prompted a return to the roots of these research
thrusts: solving real programming issues on real machines.

Compiling and optimizing programs both globally and locally,
across and within kernels and for even more complex heteroge-
neous parallel architectures, is now a challenge requiring the de-
velopment of sophisticated tools, which is quite difficult to start
from scratch. Therefore, the community has concentrated on build-
ing specific tools for the difficult sub-problems, with gateways be-
tween tools to create synergy. Many of such compiling infrastruc-
tures use or used the polyhedral model internally at different de-
grees: GCC with GRAPHITE [33], PoCC that integrates various tools
[32] such as Pluto [5] or CLooG [6], subprojects in ROSE [15] and
in LLVM [26] that will include PoCC support, SUIF [20], as well as
some of the compilers offered by vendors.

Since many efforts now focus on heterogeneous code genera-
tion, in this paper we present PIPS with its prior accomplishments
but also with this new perspective. Tools like Pluto, CLooG or
GRAPHITE explicitly use the polyhedral model to represent and to
optimize further loop nests, whereas PIPS relies on a hierarchical
control flow graph and interprocedural analysis that gathers, prop-
agates and accumulates results along this graph.

This alternative approach is presented in the paper, and orga-
nized as follows: Section 2 first describes some of PIPS use cases;
Section 3 defines key PIPS analyses used in the context of hetero-
geneous code generation. The transformations applied to automat-
ically generate CUDA code on an example are finally presented in
Section 4.

1 2011/3/18

2. Key Use Cases
This section contains examples of PIPS usage to show the power
of source-to-source compilation coupled with a strong polyhedral
and linear algebra-based abstract interpretation framework to solve
a wide range of problems.

2.1 Vectorization and Parallelization
The meaning of PIPS at the very beginning was Parallélisation in-
terprocédurale de programme scientifiques or Interprocedural Par-
allelization of Scientific Programs and was targeting the vector
supercomputers from the 80’s such as Cray by translating For-
tran 77 to Cray Fortran with directives. This project introduced
the interprocedural parallelization based on linear algebra method
[13, 14, 24, 34, 35]. Later other parallel languages and program-
ming models have been added to express parallelism for various
parallel computers: CMFortran for the Connection Machine, For-
tran 90 parallel array syntax, HPF parallel loops and OPENMP par-
allel loops.

More recently, this historical subject has again become relevant
with the development of SIMD vector instructions in almost every
processor from embedded systems (smart phones) up to high-end
computers to improve their energy efficiency. The generation of
vector instruction intrinsic functions such as SSE or AVX for x86
and Neon for ARM processors has been done in the SAC [18] PIPS
subproject. Code generation for the CUDA and OPENCL vector
types is on-going to improve further the efficiency of the generated
code for these targets.

2.2 Code and Memory Distribution
For a Transputer-based computer, automatic code parallelization
and distribution of sequential code have been developed. Different
programs were generated for compute nodes and for memory nodes
in order to emulate a global shared memory. This project introduced
code generation by scanning polyhedra [2] and code distribution
with a linear algebra method [1].

More recently, PIPS has been used to generate SPMD MPI pro-
grams from OPENMP annotated code [29] by using PIPS convex
array regions.

2.3 HPF Compilation
The previous method was extended and transposed to the High
Performance Fortran world where the alignment and distribution
methods were affine. A polyhedral method was used to distribute
code and data on nodes with a distributed memory and to generate
the proper communications [3]. The communications, I/O and data
remapping were also optimized [8, 9].

2.4 Compilation for Heterogeneous Targets
The development of heterogeneous computing with accelerators
and complex programming models motivates providing higher
level tools, for example the direct compilation of sequential pro-
grams. The previous techniques have been adapted to generate from
sequential code annotated with pragmas host and accelerator code
for the CoMap FPGA pipelined accelerator [21]. This approach has
been generalized and improved to suite the Ter@pix vector accel-
erator. Support for the CEA SCMP accelerator is on-going.

The generation of configurations for the SPoC configurable im-
age processing pipeline has been done to illustrate the use on non
classical accelerators from sequential code [10].

The PAR4ALL project [22] uses these techniques to generate
CUDA code for NVIDIA GPU and this is currently extended for
OPENCL to target other GPU and embedded systems such as ST
Microelectronics P2012.

Passes
inlining,

unrolling,
com. generation

. . .

Analyses
HCFG (see 3.10),

DFG, array regions,
transformers, preconditions

. . .

Pretty Printers
C, Fortran
XML . . .

Pipsmake Consistency Manager

Pass Managers
PyPS tpips

Compilers & Tools
Par4All sac terapyps

Internal Representation

Figure 1: PIPS infrastructure.

2.5 Program Verification
Since automatic parallelization and abstract interpretation in PIPS
use verifiers of mathematical polyhedral proofs, they can be used to
extract semantics properties in order to prove facts about programs.
For example, this is used to perform array bound checking and re-
move provably redundant array bound checks [30]. It is currently
extended to extract more precise linear integer pre- and postcondi-
tions on programs.

2.6 Program Synthesis
Code generation from specifications has been combined with the
SPEAR-DE [27] and GASPARD [16] tools to generate actual sig-
nal processing code with allocation and communication based on
array regions. Now development is underway in PIPS to compose
Simulink, Scade or Xcos/Scicos components by analyzing the C
code of components.

2.7 High-level Hardware Synthesis
From sequential code, we have implemented for the PHRASE FPGA
reconfigurable accelerator a generator for the Madeo hardware
description language based on SmallTalk [7].

2.8 Decompilation and Reverse Engineering
PIPS has also been used at HPC Project after a home brewed binary
disassembler to regenerate high level C code with loops to perform
direct parallelization from binary executables by using linear infor-
mation found on the code.

More classically, PIPS analyses results can help to understand
and maintain code. Transformations can be used too, for instance
when key variables have constant values because a simplified ver-
sion of a code is requested. As an example, a 3D code can be auto-
matically transformed into a 2D code when only the 2-D function-
ality is useful so as to reduce maintenance cost. Furthermore, some
refactoring can be performed by simplifying control structures and
eliminating useless local and global variables and by refining array
declarations. Array bound checks may provide additional informa-
tion in maintenance.

3. Key PIPS Internals
Figure 1 presents the global organization of the PIPS infrastructure.
A typical compilation scheme involves a front-end to split input
files in modules, one per function, and generate PIPS hierarchical
internal representation for each of them. Then a transformation is
called on a specific module by the pass manager. The consistency
manager takes care of calling the appropriate analyses. Such analy-

2 2011/3/18

Listing 1: Sample cross correlation of two length-N signals.
float corr_body(int k,int N,float x[N],float y[N]){

float out = 0.;int n=N-k;
while(n>0) {

n = n - 1;
out+=x[n]*y[n] / N;

}
return out;

}
int corr(int N,float x[N],float y[N],

int M,float R[M]){
if(M < N) {

for(int k=0; k<M; k++)
R[k]= corr_body(k, N, &x[k], y);

return 1;
}
else

return 0;
}

ses may be interprocedural. In that case data collection is a two-step
process: first proper information is computed intra-procedurally,
then the data is aggregated interprocedurally. If need be, this pro-
cess can be performed iteratively in order to gather more accurate
results. Finally the transformation is fed with the analysis result and
applies its algorithm.

In the following we survey a few key features of the around
300 phases and analyses available in PIPS. The signal processing
code sample in Listing 1, adapted from [31], is used throughout the
article to illustrate the corresponding transformations. All the pre-
sented codes are the result of running PIPS on it, modulo cosmetic
changes.

3.1 Simple Memory Effects
The main first analyses scheduled are the simple effects analy-
ses, which describe the memory operations performed by a given
statement. During these analyses, arrays are considered atomically.
Proper effects are memory references local to individual state-
ments. Cumulated effects take into account all effects of compound
statements, including those of their sub-statements. Summary ef-
fects summarize the cumulated effects for a function and mask ef-
fects on local entities. Effects are used to give the def /use informa-
tion on function parameters.

Many analyzes we’ll introduce later rely on these base analy-
ses. They are used by the outlining phase to distinguish between
parameters passed by values (only read) or by reference (written),
as shown in Figure 2. Memory effects on Listing 2 shows which
arrays are involved in the computation, and tells us that both M, N
and k are only read. It leads to the outlining presented in Listing 3.

3.2 Transformers
The transformers are the basis for linear relation analysis [12]
in PIPS and represent in a linear way the relation between the
store after an instruction and the store before [23], mainly for
integer variables. Some information is also kept for float, complex,
boolean and string variables. Transformers can also be interpreted
as polyhedra with both the values before and after representing their
relations.

Listing 4 illustrates this analysis on the example from Listing 1,
with transformers displayed as comments before each statement,
with special notation n’ representing the value of Variable n after
the statement. For instance, the iteration over Variable n is repre-
sented by the transformer of the while loop body, namely n’==n-1;
this information is used to recover “for” loops from while loops, re-
sulting in Listing 5.

Listing 2 : Cumulated effects analysis.
// <may be read >: x[*] y[*]
// <may be written >: R[*]
// < is read >: M N
int corr(int N,float x[N],float y[N],

int M,float R[M]){
// <may be read >: x[*] y[*]
// <may be written >: R[*]
// < is read >: M N
if (M<N) {{

// <may be read >: N k x[*] y[*]
// <may be written >: R[*]
// < is read >: M
// < is written >: k

for(int k = 0; k <= M-1; k += 1)
// <may be read >: x[*] y[*]
// <may be written >: R[*]
// < is read >: M N k

R[k] = corr_body(k,N,&x[k],y);
}
return 1;

}
else
return 0;

}

Listing 3 : Outlining illustration.
int corr(int N,float x[N],float y[N],

int M,float R[M]){
if (M<N) {{

for(int k = 0; k <= M-1; k += 1)
kernel(M,N,k,R,x,y);

}
return 1;

}
else
return 0;

}
void kernel(int M,int N,int k,float R[M],

float x[N],float y[N]){
R[k] = corr_body(k,N,&x[k],y);

}

Figure 2: Cumulated effects and their usage in outlining.

3.3 Preconditions
Preconditions [23] are affine predicates over scalar variables. It
is a predicate always true before the execution of the statement
it is attached to. It is an interprocedural analysis; preconditions
are propagated downwards on the abstract syntax tree leaves by
combination with the transformers.

At each call site, the callee’s transformer is used to propagate the
preconditions in the caller and the call site precondition is unioned
with other call site preconditions to generate the callee’s summary
precondition. Thanks to this summarization, each function is an-
alyzed only once. These predicates are used as input, each time
symbolic constants or expressions have to be evaluated: lower and
upper bounds, strides, offset, subscript. . . E.g. Listing 6 displays
interprocedural propagation of preconditions in the case of our run-
ning example.

Using PIPS’s pass manager, it is possible to improve the accu-
racy of this analysis by taking already calculated preconditions into
account. This leads to an iterative analysis described in [4].

3.4 Convex Array Regions
Convex Array Regions [13, 14] abstract with affine equalities and
inequalities the set of array elements accessed during the execution
of a given section of code. The characteristics on the referenced
array elements are picked from Regions. Then an approximation
of the amount of memory required to allocate task arrays can

3 2011/3/18

Listing 4 : Result of transformers analysis.

// T() {}
float corr_body(int k,int N,float x[N],float y[N]){
// T() {}
float out = 0.;

// T(n) {k+n ’==N}
int n = N-k;

// T(n) {k+n==N,1<=n’,n ’<=n,1<=n}
while (n>0) {

// T(n) {n ’==n-1,k+1<=N,0<=n ’}
n = n-1;

// T() {k+1<=N,0<=n}
out += x[n]*y[n]/N;

}
// T() {k+n<=N,n <=0}
return out;

}

Listing 5 : After “for” loops recovery.
float corr_body(int k,int N,float x[N],float y[N]){
float out = 0.;
int n = N-k;

for(int n0 = n; n0 >= 1; n0 += -1) {
n = n0 -1;
out += x[n]*y[n]/N;

}
return out;

}

Figure 3: Illustration and usage of the transformer analysis.

Listing 6: Result of interprocedural preconditions analysis.

// P() {k+2<=N,0<=k}
float corr_body(int k,int N,float x[N],float y[N]){
// P() {k+2<=N,0<=k}
float out = 0.;

// P() {k+2<=N,0<=k}
int n = N-k;

// P(n) {k+n==N,k+2<=N,0<=k}
while (n>0) {

// P(n) {k+2<=N,k+n<=N,0<=k,1<=n}
n = n-1;

// P(n) {k+2<=N,k+n+1<=N,0<=k,0<=n}
out += x[n]*y[n]/N;

}
// P(n) {n==0,k+2<=N,0<=k}
return out;

}

be deduced. The similarity of concept between array regions and
data transfer between a host and a remote accelerator is used to
automatically generate the latter in PAR4ALL. Listing 7 displays
the result of this analysis on the code from Listing 1.

3.5 Complexities
Complexities [36] are symbolic estimations of the execution time
of statements. They are computed interprocedurally and based on
polynomial models of execution time. The complexity is less pre-
cise in case of tests, but it gives a magnitude order of task operations
(symbolic or/and numeric).

3.6 Dependence Tests
Several dependence tests [35] are implemented in PIPS. They com-
pute dependence cones or levels. Dependences on loops are used
for parallelization but also to help the various mapping tools.

Listing 7: Result of interprocedural convex array region analysis.

// <R[PHI1]-W-MAY -{0 <=PHI1 ,PHI1 +1<=M,M+1<=N}>
// <x[PHI1]-R-MAY -{0 <=PHI1 ,PHI1 +1<=N,1<=M,M+1<=N}>
// <y[PHI1]-R-MAY -{0 <=PHI1 ,PHI1 +1<=N,1<=M,M+1<=N}>
int corr(int N,float x[N],float y[N],

int M,float R[M]){
// <R[PHI1]-W-MAY -{0 <=PHI1 ,PHI1 +1<=M,M+1<=N}>
// <x[PHI1]-R-MAY -{0 <=PHI1 ,PHI1 +1<=N,1<=M,M+1<=N}>
// <y[PHI1]-R-MAY -{0 <=PHI1 ,PHI1 +1<=N,1<=M,M+1<=N}>
if (M<N) {{

// <R[PHI1]-W-EXACT -{0 <=PHI1 ,PHI1 +1<=M,M+1<=N}>
// <x[PHI1]-R-EXACT -{0 <=PHI1 ,PHI1 +1<=N,1<=M,M+1<=N}>
// <y[PHI1]-R-EXACT -{0 <=PHI1 ,PHI1 +1<=N,1<=M,M+1<=N}>

for(int k = 0; k <= M-1; k += 1)
// <R[PHI1]-W-EXACT -{ PHI1 ==k,0<=k,k+1<=M,M+1<=N}>
// <x[PHI1]-R-EXACT -{k<=PHI1 ,PHI1 +1<=N,0<=k,k+1<=M,M

+1<=N}>
// <y[PHI1]-R-EXACT -{0 <=PHI1 ,PHI1+k+1<=N,0<=k,k+1<=M

,M+1<=N}>
kernel(M,N,k,R,x,y);

}
return 1;

}
else
return 0;

}

3.7 Linear Algebra for Analyses and Transformations
PIPS analyses are based on the C3 linear algebra library, mainly
developed at MINES ParisTech from the 80’s. It provides clas-
sical types (integer vectors, matrix, polynomial...) with various
algorithms (mathematical operations, HERMITE’s normal form,
SMITH’s normal form, sorting, simplex...) allowing the implemen-
tation of all the PIPS polyhedral and linear analyses and transfor-
mations, such as unimodular transformations. Our interprocedural
compiler handles a large number of variables including global vari-
ables that are mostly not related. Thus a sparse representation of
constraints is used. It reduces memory storage without impacting
the execution time.

3.8 Parsers
PIPS has its own Fortran 77 parser. It has been extended to support
HPF and OPENMP. In 2003, the C89 parser from the Berkeley
CCur project has been added. It was recently extended to deal with
C99 and #pragma. The GCC Fortran 2003 parser has been grafted
on PIPS and more recent Fortran dialect support is improving.

We have also developed a Scilab/Matlab to C compiler with type
inference to parallelize such languages in PAR4ALL.

3.9 Prettyprinters and Runtime Backends
PIPS is a source-to-source compiler and logically can regenerate
source code, but as shown in § 2 it can do more. For the classical
source generation, C and Fortran prettyprinters are available, with
different flavours according to the target: C89 or C99, Fortran 77,
95 or 2003, with or without parallel decorations (OPENMP, various
parallel extensions...).

To generate code closer to the assembly for SIMD vector exten-
sions in generic processors or various specific processor instruc-
tions, intrinsics functions are used in the internal representation and
are generated as-is by the prettyprinter.

To generate language extensions for various accelerators such
as CUDA, OPENCL or very specific accelerator languages, we use
some post-processing on the prettyprinter output coupled with the
PAR4ALL Accel runtime based on C, CPP and C++ to target CUDA
and OPENCL. A nice side effect is that we can have OPENMP em-
ulation code almost for free. It is quite useful for debugging since

4 2011/3/18

for example we can use Valgrind on the emulated code with CUDA-
like communications. It can also be used by end-users wanting to
program directly in low level tools such as CUDA and OPENCL in
a portable and less verbose way.

3.10 Internal Representation
The PIPS internal representation is a hierarchical control flow graph
(HCFG) with a compact representation and a good trade-off be-
tween simplicity and source representation precision. It is com-
mon to Fortran and C, easing for example the generation of CUDA
or OPENCL directly from Fortran. Semantics information such as
polyhedral representations are added as decoration resources. The
representation is expressed in the NewGen [25] domain-specific
language that generates all the basic object methods (accessors, vis-
itor pattern, constructors/destructors) allowing some elegant pro-
gramming even though PIPS is mainly written in C [11].

3.11 Consistency and Persistence Manager
Since there are many passes and resources in a compiler, chain-
ing them and providing up-to-date information is quite challeng-
ing. This issue is solved with a consistency manager using an
à la make description of dependence relations between resources
though passes or analyses. When asking for a resource or explicitly
applying a transformation, all the necessary passes are applied in a
lazy manner toward constructing the goal asked by the user. Since
the dependence relations include the caller and callee notions, this
deals also with interprocedural analysis in an elegant recursive way.
A persistence manager automatically allows PIPS to be stopped and
restarted later, allowing by side effect remote invocation or iterative
compilation with try/undo almost for free.

3.12 Pass Managers
All passes and analyses of PIPS are defined to compiler develop-
ers through the pass managers. PIPS actually has two of them: the
legacy one, tpips, uses a shell-like syntax with hard-coded func-
tionalities; the newer exposes a PYTHON API, PyPS, where mod-
ules, loops and compilation units are exposed as first-class entities.
Using the expressiveness of the PYTHON language, it allows to ef-
ficiently compose transformations using complex patterns and to
quickly build new compilers. Going a step forward, compilers built
this way can be combined into other compilers. E.g the multimedia
instruction compiler can be combined with the OPENMP compiler
to target multicores with SIMD instruction units. The PAR4ALL au-
tomatic CUDA code generator is based on this interface.

4. Code Transformations for Heterogeneous
Computing

How does a developer port an application on a GPGPU using CUDA?
First, he profiles the application to identify hotspots, generally
loops. Then he verifies that the outermost loop is parallel, and trans-
forms the loop body into a CUDA kernel. Finally, he adds the data
transfers and the kernel call on the host side. The following subsec-
tions briefly describe transformations to automate this process. The
goal is not to present each of them in depth. Instead, we show that
PIPS analyses provide appropriate abstractions to efficiently imple-
ment them.

4.1 Computation Intensity Estimation
Offloading a loop on a GPU is relevant only if the data transfer vs.
computational intensity trade-off is clearly in favor of the latter.
PIPS provides two relevant analyses to make this decision: execu-
tion time estimation (see § 3.5) and convex array region analyses
(see § 3.4). The former, when available, is expressed as a polyno-
mial in the program variables, with values in the current memory

store. The volume of the array regions is a polynomial and a good
estimation of the memory footprint. The asymptotic comparison of
these two polynomials, done either at compile time or at run time
or a combination of both, makes it possible to decide whether of-
floading is relevant.

4.2 Outlining
Code fragments marked by the previous phase as computationally
intensive can be offloaded to the accelerator. Following the load
work store idiom, it is necessary to extract these fragments into new
functions to represent the work. Because the accelerator generally
does not use the same input language as the host, this separation
also distinguishes host operations from the ones of the accelerator
based on their function name. Moreover, the outlined fragment is
located in an independent compilation unit. This task is performed
in a similar manner as [28] based on the private variables analysis
and the def /use information from the summary effects (see § 3.1).

4.3 Statement Isolation
Statement isolation is the process of isolating all the data accessed
by a statement in newly allocated memory areas. This newly allo-
cated areas simulate the remote memory, but are still representable
in the internal representation. PIPS offers a convenient analysis to
generate the data copy between the remote memory and the local
one: convex array regions (see § 3.4). Because usual DMAs can
only transfer efficiently rectangular areas, those regions are first
over-estimated using their rectangular hull. Then read regions are
translated into a sequence of host-to-accelerator data transfers and
written regions are converted into accelerator-to-host data transfers.
Additionally the array regions that may be written are also copied-
in to ensure global consistency. New array variables are allocated
to represent the variables in the kernel and receive the copied data.
Their dimension is the result of the union of the read and write
regions above and may be lower than the original ones. They are
substituted to the old ones in the kernel code.

4.4 Rectangular Symbolic Tiling and Memory Footprint
Thanks to convex array regions, it is possible to compute an over-
approximation of the memory footprint of a statement. If it exceeds
the accelerator size, the computation cannot be run by the acceler-
ator in a single pass. Assuming the outer statement is a loop nest,
it is however still possible to tile its iteration space and to perform
the computation in multiple passes. Because the tiling parameters
depend on the memory footprint of the inner loops, the tiling is first
performed symbolically. Then the memory footprint is computed
as a function of these parameters, which leads to a set of inequali-
ties. This set can be augmented by additional constraints such as the
number of processing elements which limits the number of iteration
of one of the loops. Again, it may not be possible to deduce stat-
ically a value for the parameters from these inequalities, in which
case decision is postponed until run time.

4.5 Iteration Clamping
When a loop is scheduled on a GPGPU, iteration clamping must
be used to ensure only the relevant loop iterations are executed.
PIPS makes it possible to guard the execution of the kernel by its
preconditions, which ensures no extra iteration is performed.

5. Conclusion
PIPS is a source-to-source transformation framework that contains
approximately 300 passes and has deep foundations in abstract in-
terpretation based on linear algebra and the polyhedral model. De-
spite its age, (it is the project that first used polyhedral methods
in compilation in the 80’s), the PIPS project has made good funda-
mental design choices from the beginning that have allowed us to

5 2011/3/18

evolve through subsequent generations with the integration of new
tools and features.

The linear algebra framework used in PIPS has a sparse repre-
sentation, allowing us to represent whole programs in a memory-
efficient way and to reason across procedures instead of only over
loop nests with affine bounds.

PIPS has been used on a wide range of applications, showing
the power of a linear algebra framework coupled with a source-to-
source infrastructure. The source-to-source approach allows also
to debug the application and the compilation techniques after each
transformation pass

PIPS is currently targeting the major issues in compilation to-
day arising from the development of both parallelism (manycores,
cloud computing) and heterogeneous computing with strong energy
constraints. These trends translate into a need for automatic paral-
lelization with data and communication mapping, communication
optimization, and increased memory locality. We showed in this
paper how the implementation of these ideas can be readily per-
formed using PIPS as a development infrastructure for application-
or architecture-specific (here a GPU) compiler phases.

PIPS is also used in the PAR4ALL commercial product that auto-
matically parallelizes C, Fortran, Scilab and Matlab to OPENMP,
CUDA, OPENCL and various accelerators in order to shorten the
time-to-market of customer applications. Performance results are
shown for real programs in [22].

Acknowledgement
This work is currently funded by the European ARTEMIS
SCALOPES and SMECY projects, the French NSF (ANR) FREIA
and MédiaGPU projects, the French Images and Networks research
cluster TransMedi@ project, and the French System@TIC research
cluster OpenGPU project. The authors want to thanks their col-
leagues working on/with PIPS and PAR4ALL at various places and
the so many PIPS contributors that made it possible. We thank Jan-
ice ONANIAN McMAHON for her proofreading.

References
[1] C. Ancourt and F. Irigoin. Automatic code distribution. In Third

Workshop on Compilers for Parallel Computers (CPC’92), Vienna.

[2] C. Ancourt and F. Irigoin. Scanning polyhedra with do loops. In
Proceedings of the third ACM SIGPLAN symposium on Principles and
practice of parallel programming, PPOPP ’91, 1991.

[3] C. Ancourt, F. Coelho, F. Irigoin, and R. Keryell. A linear algebra
framework for static High Performance Fortran code distribution. Sci-
entific Programming, 6(1):3–27, 1997.

[4] C. Ancourt, F. Coelho, and F. Irigoin. A modular static analysis
approach to affine loop invariants detection. Electr. Notes Theor.
Comput. Sci., 267(1), 2010.

[5] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam,
A. Rountev, and P. Sadayappan. A compiler framework for optimiza-
tion of affine loop nests for GPGPUs. ICS ’08, 2008.

[6] C. Bastoul. Code generation in the polyhedral model is easier than
you think. In PACT’13, Sept. 2004.

[7] J. Cambonie, S. Guérin, R. Keryell, L. Lagadec, B. Pottier, O. Sen-
tieys, B. Weber, and S. Yazdani. Compiler and system techniques for
SoC distributed reconfigurable accelerators. In SAMOS IV, July 2004.

[8] F. Coelho. Compilation of I/O communications for HPF. In 5th
Symposium on the Frontiers of Massively Parallel Computation, 1995.

[9] F. Coelho and C. Ancourt. Optimal compilation of HPF remappings.
Journal of Parallel and Distributed Computing, 38(2), Nov. 1996.

[10] F. Coelho and F. Irigoin. Compiling for a heterogeneous vector image
processor. In Workhop on Optimizations for DSP and Embedded
Systems (ODES’9), Chamonix, France, Apr. 2011.

[11] F. Coelho, P. Jouvelot, F. Irigoin, and C. Ancourt. Data and Process
Abstraction in PIPS Internal Representation. In Workshop on Internal
Representations (WIR), Chamonix, France, Apr. 2011.

[12] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints
among variables of a program. POPL ’78, 1978.

[13] B. Creusillet and F. Irigoin. Interprocedural array region analyses.
International Journal of Parallel Programming, 24(6):513–546, 1996.

[14] B. Creusillet and F. Irigoin. Exact versus approximate array region
analyses. In Languages and Compilers for Parallel Computing, 1997.

[15] Daniel J. Quinlan. Rose: Compiler support for object-oriented frame-
works. Parallel Processing Letters, 10(2/3), 2000.

[16] F. Devin, P. Boulet, J.-L. Dekeyser, and P. Marquet. Gaspard: A visual
parallel programming environment. PARELEC ’02, 2002.

[17] P. Feautrier. Toward automatic partitioning of arrays on distributed
memory computers. ICS ’93.

[18] S. Guelton, F. Irigoin, R. Keryell, and F. Perrin. SAC : An Efficient
Retargetable Source-to-Source Compiler for Multimedia Instruction
Sets. Technical Report CRI/A-429, Mines Paris-Tech, 2010.

[19] N. Halbwachs, Y.-E. Proy, and P. Roumanoff. Verification of real-
time systems using linear relation analysis. Formal Methods in System
Design, 1997.

[20] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Murphy, S.-
W. Liao, E. Bugnion, and M. S. Lam. Maximizing Multiprocessor
Performance with the SUIF Compiler. Computer, 1996.

[21] F. Hannig, H. Dutta, A. Kupriyanov, J. Teich, R. Schaffer, S. Siegel,
R. Merker, R. Keryell, B. Pottier, and O. Sentieys. Co-design of
massively parallel embedded processor architectures. In ReCoSoC’05.

[22] HPC Project. Par4All initiative for automatic parallelization, 2010.
http://www.par4all.org.

[23] F. Irigoin. Interprocedural analyses for programming environments.
In Workshop on Environments and Tools For Parallel Scientific Com-
puting. CNRS-NSF, Sept. 1992.

[24] F. Irigoin, P. Jouvelot, and R. Triolet. Semantical interprocedural
parallelization: An overview of the PIPS project. ICS ’91.

[25] P. Jouvelot and R. Triolet. NewGen: A Language-Independent Pro-
gram Generator. Technical Report CRI/A-191, Mines ParisTech, 1989.

[26] C. Lattner and V. Adve. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In CGO, 2004.

[27] E. Lenormand and G. Édelin. An industrial perspective: A prag-
matic high end signal processing design environment at THALES. In
SAMOS, 2003.

[28] C. Liao, D. J. Quinlan, R. Vuduc, and T. Panas. Effective source-to-
source outlining to support whole program empirical optimization. In
Languages and Compilers for Parallel Computing, Oct. 2009.

[29] D. Millot, A. Muller, C. Parrot, and F. Silber-Chaussumier. From
OpenMP to MPI : first experiments of the STEP source-to-source
transformation. In ParCO - PARMA, Sept. 2009.

[30] T. V. N. Nguyen and F. Irigoin. Efficient and effective array bound
checking. ACM Trans. Program. Lang. Syst., 27, May 2005.

[31] S. J. Orfanidis. Introduction to signal processing. 1995.
[32] L.-N. Pouchet, C. Bastoul, and U. Bondhugula. PoCC: the Polyhedral

Compiler Collection, 2010. http://pocc.sf.net.
[33] K. Trifunovic, A. Cohen, D. Edelsohn, F. Li, T. Grosser, H. Jaga-

sia, R. Ladelsky, S. Pop, J. Sjödin, and R. Upadrasta. GRAPHITE
Two Years After: First Lessons Learned From Real-World Polyhedral
Compilation. In GCC Research Opportunities Workshop (GROW’10).

[34] R. Triolet, F. Irigoin, and P. Feautrier. Direct parallelization of call
statement. In SIGPLAN ’86 Symposium on Compiler Construction.

[35] Y.-Q. Yang, C. Ancourt, and F. Irigoin. Minimal data dependence
abstractions for loop transformations: extended version. International
Journal of Parallel Programming, 23, Aug. 1995.

[36] L. Zhou. Complexity estimation in the PIPS parallel programming
environment. In Parallel Processing: CONPAR 92—VAPP V, 1992.

6 2011/3/18

